Bidirectional recurrent neural networks for seismic event detection
- URL: http://arxiv.org/abs/2012.03009v1
- Date: Sat, 5 Dec 2020 11:41:50 GMT
- Title: Bidirectional recurrent neural networks for seismic event detection
- Authors: Claire Birnie and Fredrik Hansteen
- Abstract summary: This work introduces a deep learning approach to event detection that is an alternative to the STA/LTA trigger.
A bi-directional, long-short-term memory, neural network is trained solely on synthetic traces.
Its real time applicability is proven with 600 traces processed in real time on a single processing unit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real time, accurate passive seismic event detection is a critical safety
measure across a range of monitoring applications from reservoir stability to
carbon storage to volcanic tremor detection. The most common detection
procedure remains the Short-Term-Average to Long-Term-Average (STA/LTA) trigger
despite its common pitfalls of requiring a signal-to-noise ratio greater than
one and being highly sensitive to the trigger parameters. Whilst numerous
alternatives have been proposed, they often are tailored to a specific
monitoring setting and therefore cannot be globally applied, or they are too
computationally expensive therefore cannot be run real time. This work
introduces a deep learning approach to event detection that is an alternative
to the STA/LTA trigger. A bi-directional, long-short-term memory, neural
network is trained solely on synthetic traces. Evaluated on synthetic and field
data, the neural network approach significantly outperforms the STA/LTA trigger
both on the number of correctly detected arrivals as well as on reducing the
number of falsely detected events. Its real time applicability is proven with
600 traces processed in real time on a single processing unit.
Related papers
- Spatial-Temporal Bearing Fault Detection Using Graph Attention Networks and LSTM [0.7864304771129751]
This paper introduces a novel method that combines Graph Attention Network (GAT) and Long Short-Term Memory (LSTM) networks.
This approach captures both spatial and temporal dependencies within sensor data, improving the accuracy of bearing fault detection.
arXiv Detail & Related papers (2024-10-15T12:55:57Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - A Bi-LSTM Autoencoder Framework for Anomaly Detection -- A Case Study of
a Wind Power Dataset [2.094022863940315]
Anomalies refer to data points or events that deviate from normal and homogeneous events.
This study presents a novel framework for time series anomaly detection using a combination of Bi-LSTM architecture and Autoencoder.
The Bi-LSTM Autoencoder model achieved a classification accuracy of 96.79% and outperformed more commonly used LSTM Autoencoder models.
arXiv Detail & Related papers (2023-03-17T00:24:28Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
We argue that traditional methods have rarely made use of both times-series dynamics of the data as well as the relatedness of the features from different sensors.
We propose a model, termed as DynImp, to handle different time point's missingness with nearest neighbors along feature axis.
We show that the method can exploit the multi-modality features from related sensors and also learn from history time-series dynamics to reconstruct the data under extreme missingness.
arXiv Detail & Related papers (2022-09-26T21:59:14Z) - ReDFeat: Recoupling Detection and Description for Multimodal Feature
Learning [51.07496081296863]
We recouple independent constraints of detection and description of multimodal feature learning with a mutual weighting strategy.
We propose a detector that possesses a large receptive field and is equipped with learnable non-maximum suppression layers.
We build a benchmark that contains cross visible, infrared, near-infrared and synthetic aperture radar image pairs for evaluating the performance of features in feature matching and image registration tasks.
arXiv Detail & Related papers (2022-05-16T04:24:22Z) - Bandit Quickest Changepoint Detection [55.855465482260165]
Continuous monitoring of every sensor can be expensive due to resource constraints.
We derive an information-theoretic lower bound on the detection delay for a general class of finitely parameterized probability distributions.
We propose a computationally efficient online sensing scheme, which seamlessly balances the need for exploration of different sensing options with exploitation of querying informative actions.
arXiv Detail & Related papers (2021-07-22T07:25:35Z) - Optimal Sequential Detection of Signals with Unknown Appearance and
Disappearance Points in Time [64.26593350748401]
The paper addresses a sequential changepoint detection problem, assuming that the duration of change may be finite and unknown.
We focus on a reliable maximin change detection criterion of maximizing the minimal probability of detection in a given time (or space) window.
The FMA algorithm is applied to detecting faint streaks of satellites in optical images.
arXiv Detail & Related papers (2021-02-02T04:58:57Z) - RED: Deep Recurrent Neural Networks for Sleep EEG Event Detection [0.0]
We propose a deep learning approach for sleep EEG event detection called Recurrent Event Detector (RED)
RED uses one of two input representations: a) the time-domain EEG signal, or b) a complex spectrogram of the signal obtained with the Continuous Wavelet Transform (CWT)
When evaluated on the MASS dataset, our detectors outperform the state of the art in both sleep spindle and K-complex detection with a mean F1-score of at least 80.9% and 82.6%, respectively.
arXiv Detail & Related papers (2020-05-15T21:48:26Z) - ReRe: A Lightweight Real-time Ready-to-Go Anomaly Detection Approach for
Time Series [0.27528170226206433]
This paper introduces ReRe, a Real-time Ready-to-go proactive Anomaly Detection algorithm for streaming time series.
ReRe employs two lightweight Long Short-Term Memory (LSTM) models to predict and jointly determine whether or not an upcoming data point is anomalous.
Experiments based on real-world time-series datasets demonstrate the good performance of ReRe in real-time anomaly detection.
arXiv Detail & Related papers (2020-04-05T21:26:24Z) - RePAD: Real-time Proactive Anomaly Detection for Time Series [0.27528170226206433]
RePAD is a Real-time Proactive Anomaly Detection algorithm for streaming time series based on Long Short-Term Memory (LSTM)
By dynamically adjusting the detection threshold over time, RePAD is able to tolerate minor pattern change in time series and detect anomalies either proactively or on time.
arXiv Detail & Related papers (2020-01-24T09:13:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.