Obstacle avoidance and path finding for mobile robot navigation
- URL: http://arxiv.org/abs/2012.03105v1
- Date: Sat, 5 Dec 2020 19:25:09 GMT
- Title: Obstacle avoidance and path finding for mobile robot navigation
- Authors: Poojith Kotikalapudi and Vinayak Elangovan
- Abstract summary: This paper investigates different methods to detect obstacles ahead of a robot using a camera in the robot, an aerial camera, and an ultrasound sensor.
We also explored various efficient path finding methods for the robot to navigate to the target source.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper investigates different methods to detect obstacles ahead of a
robot using a camera in the robot, an aerial camera, and an ultrasound sensor.
We also explored various efficient path finding methods for the robot to
navigate to the target source. Single and multi-iteration angle-based
navigation algorithms were developed. The theta-based path finding algorithms
were compared with the Dijkstra Algorithm and their performance were analyzed.
Related papers
- Evolutionary Swarm Robotics: Dynamic Subgoal-Based Path Formation and
Task Allocation for Exploration and Navigation in Unknown Environments [0.0]
The paper presents a method called the sub-goal-based path formation, which establishes a path between two different locations by exploiting visually connected sub-goals.
The paper tackles the problem of inter-collision (traffic) among a large number of robots engaged in path formation, which negatively impacts the performance of the sub-goal-based method.
A task allocation strategy is proposed, leveraging local communication protocols and light signal-based communication.
arXiv Detail & Related papers (2023-12-27T15:13:56Z) - POA: Passable Obstacles Aware Path-planning Algorithm for Navigation of
a Two-wheeled Robot in Highly Cluttered Environments [53.41594627336511]
Passable Obstacles Aware (POA) planner is a novel navigation method for two-wheeled robots in a cluttered environment.
Our algorithm allows two-wheeled robots to find a path through passable obstacles.
arXiv Detail & Related papers (2023-07-16T19:44:27Z) - Construction of Object Boundaries for the Autopilotof a Surface Robot
from Satellite Imagesusing Computer Vision Methods [101.18253437732933]
A method for detecting water objects on satellite maps is proposed.
An algorithm for calculating the GPS coordinates of the contours is created.
The proposed algorithm allows saving the result in a format suitable for the surface robot autopilot module.
arXiv Detail & Related papers (2022-12-05T12:07:40Z) - Discovering Unsupervised Behaviours from Full-State Trajectories [1.827510863075184]
We propose an analysis of Autonomous Robots Realising their Abilities; a Quality-Diversity algorithm that autonomously finds behavioural characterisations.
We evaluate this approach on a simulated robotic environment, where the robot has to autonomously discover its abilities from its full-state trajectories.
More specifically, the analysed approach autonomously finds policies that make the robot move to diverse positions, but also utilise its legs in diverse ways, and even perform half-rolls.
arXiv Detail & Related papers (2022-11-22T16:57:52Z) - A Novel Knowledge-Based Genetic Algorithm for Robot Path Planning in
Complex Environments [3.318708963153893]
The proposed genetic algorithm incorporates the domain knowledge of robot path planning into its specialized operators.
The proposed algorithm is capable of finding a near-optimal robot path in both static and dynamic complex environments.
arXiv Detail & Related papers (2022-09-03T19:13:16Z) - Systematic Comparison of Path Planning Algorithms using PathBench [55.335463666037086]
Path planning is an essential component of mobile robotics.
Development of learning-based path planning algorithms has been experiencing rapid growth.
This paper presents PathBench, a platform for developing, visualizing, training, testing, and benchmarking of existing and future path planning algorithms.
arXiv Detail & Related papers (2022-03-07T01:52:57Z) - CNN-based Omnidirectional Object Detection for HermesBot Autonomous
Delivery Robot with Preliminary Frame Classification [53.56290185900837]
We propose an algorithm for optimizing a neural network for object detection using preliminary binary frame classification.
An autonomous mobile robot with 6 rolling-shutter cameras on the perimeter providing a 360-degree field of view was used as the experimental setup.
arXiv Detail & Related papers (2021-10-22T15:05:37Z) - XAI-N: Sensor-based Robot Navigation using Expert Policies and Decision
Trees [55.9643422180256]
We present a novel sensor-based learning navigation algorithm to compute a collision-free trajectory for a robot in dense and dynamic environments.
Our approach uses deep reinforcement learning-based expert policy that is trained using a sim2real paradigm.
We highlight the benefits of our algorithm in simulated environments and navigating a Clearpath Jackal robot among moving pedestrians.
arXiv Detail & Related papers (2021-04-22T01:33:10Z) - Autonomous Navigation in Dynamic Environments: Deep Learning-Based
Approach [0.0]
This thesis studies different deep learning-based approaches, highlighting the advantages and disadvantages of each scheme.
One of the deep learning methods based on convolutional neural network (CNN) is realized by software implementations.
We propose a low-cost approach, for indoor applications such as restaurants, museums, etc, on the base of using a monocular camera instead of a laser scanner.
arXiv Detail & Related papers (2021-02-03T23:20:20Z) - Morphology-Agnostic Visual Robotic Control [76.44045983428701]
MAVRIC is an approach that works with minimal prior knowledge of the robot's morphology.
We demonstrate our method on visually-guided 3D point reaching, trajectory following, and robot-to-robot imitation.
arXiv Detail & Related papers (2019-12-31T15:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.