論文の概要: A Weighted Solution to SVM Actionability and Interpretability
- arxiv url: http://arxiv.org/abs/2012.03372v1
- Date: Sun, 6 Dec 2020 20:35:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-22 02:43:13.661809
- Title: A Weighted Solution to SVM Actionability and Interpretability
- Title(参考訳): SVMの動作性と解釈可能性に対する軽量ソリューション
- Authors: Samuel Marc Denton and Ansaf Salleb-Aouissi
- Abstract要約: 実行可能性(Actionability)は、機械学習モデルの解釈可能性や説明可能性と同じくらい重要であり、進行中で重要な研究トピックである。
本稿では,線形SVMモデルと非線形SVMモデルの両方において,動作可能性の問題に対する解を求める。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research in machine learning has successfully developed algorithms to build
accurate classification models. However, in many real-world applications, such
as healthcare, customer satisfaction, and environment protection, we want to be
able to use the models to decide what actions to take.
We investigate the concept of actionability in the context of Support Vector
Machines. Actionability is as important as interpretability or explainability
of machine learning models, an ongoing and important research topic.
Actionability is the task that gives us ways to act upon machine learning
models and their predictions.
This paper finds a solution to the question of actionability on both linear
and non-linear SVM models. Additionally, we introduce a way to account for
weighted actions that allow for more change in certain features than others. We
propose a gradient descent solution on the linear, RBF, and polynomial kernels,
and we test the effectiveness of our models on both synthetic and real
datasets. We are also able to explore the model's interpretability through the
lens of actionability.
- Abstract(参考訳): 機械学習の研究は、正確な分類モデルを構築するアルゴリズムの開発に成功した。
しかし、医療、顧客満足度、環境保護といった現実世界の多くのアプリケーションでは、モデルを利用して、どのようなアクションをとるかを決めたいと思っています。
支援ベクトルマシンの文脈における動作可能性の概念について検討する。
実行可能性(Actionability)は、機械学習モデルの解釈可能性や説明可能性と同じくらい重要である。
Actionabilityは、マシンラーニングモデルとその予測に対処する方法を提供するタスクです。
本稿では,線形モデルと非線形svmモデルの両方における動作可能性の問題に対する解を求める。
さらに、特定の機能に対して他の機能よりも多くの変更を可能にする重み付けアクションの考慮方法も導入しています。
線形, rbf, 多項式カーネル上の勾配降下解を提案し, 合成データと実データの両方におけるモデルの有効性を検証した。
我々はまた、行動可能性のレンズを通してモデルの解釈可能性を探ることができる。
関連論文リスト
- Learning Low-Dimensional Strain Models of Soft Robots by Looking at the Evolution of Their Shape with Application to Model-Based Control [2.058941610795796]
本稿では,低次元物理モデル学習のための合理化手法を提案する。
各種平面ソフトマニピュレータを用いたシミュレーションにより,本手法の有効性を検証した。
物理的に互換性のあるモデルを生成する方法のおかげで、学習したモデルはモデルベースの制御ポリシーと簡単に組み合わせることができる。
論文 参考訳(メタデータ) (2024-10-31T18:37:22Z) - SOLD: Slot Object-Centric Latent Dynamics Models for Relational Manipulation Learning from Pixels [16.020835290802548]
Slot-Attention for Object-centric Latent Dynamicsは、新しいモデルに基づく強化学習アルゴリズムである。
画素入力から教師なしの方法でオブジェクト中心のダイナミックスモデルを学習する。
構造化潜在空間は、モデル解釈可能性を改善するだけでなく、振る舞いモデルが推論する価値のある入力空間も提供することを実証する。
論文 参考訳(メタデータ) (2024-10-11T14:03:31Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z) - Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
トランスファーラーニングは、事前訓練されたディープラーニングモデルが広く利用可能であることから、コンピュータビジョンタスクにおいて重要になっている。
既存のトレーニング済みモデルの転送可能性の測定方法は、符号化された静的特徴とタスクラベルの間の統計的相関に依存する。
我々はこれらの課題に対処するために,PEDという物理に着想を得たアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-29T07:15:57Z) - Cross Feature Selection to Eliminate Spurious Interactions and Single
Feature Dominance Explainable Boosting Machines [0.0]
解釈性は法的、倫理的、実践的な理由において不可欠である。
高性能モデルは、冗長な特徴と単一機能支配との素早い相互作用に悩まされることがある。
本稿では,これらの課題に対処するための新しいアプローチとして,代替のクロスフィーチャー選択,アンサンブル機能,モデル構成変更手法について検討する。
論文 参考訳(メタデータ) (2023-07-17T13:47:41Z) - ComplAI: Theory of A Unified Framework for Multi-factor Assessment of
Black-Box Supervised Machine Learning Models [6.279863832853343]
ComplAIは、説明可能性、堅牢性、パフォーマンス、公正性、モデル行動を有効にし、観察し、分析し、定量化するユニークなフレームワークである。
教師付き機械学習モデルの評価は、正しい予測を行う能力だけでなく、全体的な責任の観点から行う。
論文 参考訳(メタデータ) (2022-12-30T08:48:19Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Sufficiently Accurate Model Learning for Planning [119.80502738709937]
本稿では,制約付きSufficiently Accurateモデル学習手法を提案する。
これはそのような問題の例を示し、いくつかの近似解がいかに近いかという定理を提示する。
近似解の質は、関数のパラメータ化、損失と制約関数の滑らかさ、モデル学習におけるサンプルの数に依存する。
論文 参考訳(メタデータ) (2021-02-11T16:27:31Z) - Model-Based Visual Planning with Self-Supervised Functional Distances [104.83979811803466]
モデルに基づく視覚的目標達成のための自己監視手法を提案する。
私たちのアプローチは、オフラインでラベルなしのデータを使って完全に学習します。
このアプローチは,モデルフリーとモデルベース先行手法の両方で大幅に性能が向上することがわかった。
論文 参考訳(メタデータ) (2020-12-30T23:59:09Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。