論文の概要: A Pattern Language for Machine Learning Tasks
- arxiv url: http://arxiv.org/abs/2407.02424v2
- Date: Sun, 04 May 2025 21:35:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:34.979277
- Title: A Pattern Language for Machine Learning Tasks
- Title(参考訳): 機械学習タスクのためのパターン言語
- Authors: Benjamin Rodatz, Ian Fan, Tuomas Laakkonen, Neil John Ortega, Thomas Hoffmann, Vincent Wang-Mascianica,
- Abstract要約: 学習者の合成に対する等式制約として,目的関数の本質的データを定式化する。
1)ドメイン間における機械学習のアプローチの統一的な視点を提供し,(2)望ましい振る舞いをモデルに依存しない設計と最適化し,(3)理論的コンピュータ科学からの洞察を実践的な機械学習へインポートする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We formalise the essential data of objective functions as equality constraints on composites of learners. We call these constraints "tasks", and we investigate the idealised view that such tasks determine model behaviours. We develop a flowchart-like graphical mathematics for tasks that allows us to; (1) offer a unified perspective of approaches in machine learning across domains; (2) design and optimise desired behaviours model-agnostically; and (3) import insights from theoretical computer science into practical machine learning. As a proof-of-concept of the potential practical impact of our theoretical framework, we exhibit and implement a novel "manipulator" task that minimally edits input data to have a desired attribute. Our model-agnostic approach achieves this end-to-end, and without the need for custom architectures, adversarial training, random sampling, or interventions on the data, hence enabling capable, small-scale, and training-stable models.
- Abstract(参考訳): 学習者の合成に対する等式制約として,目的関数の本質的データを定式化する。
我々はこれらの制約を「タスク」と呼び、そのようなタスクがモデル行動を決定するという理想化された見解を考察する。
1)ドメイン間における機械学習のアプローチの統一的な視点を提供し,(2)望ましい振る舞いをモデルに依存しない設計と最適化し,(3)理論的コンピュータ科学からの洞察を実践的な機械学習へインポートする。
理論的枠組みの潜在的な実践的影響の実証として,入力データを最小限に編集して所望の属性を持つような,新しい「マニピュレータ」タスクを提示し,実装する。
我々のモデルに依存しないアプローチは、このエンドツーエンドを実現し、カスタムアーキテクチャ、敵対的トレーニング、ランダムサンプリング、データへの介入を必要とせず、可能で小規模で安定なモデルを可能にする。
関連論文リスト
- Neural Network Reprogrammability: A Unified Theme on Model Reprogramming, Prompt Tuning, and Prompt Instruction [55.914891182214475]
モデル適応のための統一フレームワークとして,ニューラルネットワークの再プログラム可能性を導入する。
本稿では,4つの重要な側面にまたがる情報操作アプローチを分類する分類法を提案する。
残る技術的課題や倫理的考察も分析する。
論文 参考訳(メタデータ) (2025-06-05T05:42:27Z) - Approach to Finding a Robust Deep Learning Model [0.28675177318965045]
機械学習(ML)と人工知能(AI)のアプリケーションの開発は、多数のモデルのトレーニングを必要とする。
本稿ではメタアルゴリズムとして設計したモデル選択アルゴリズムを用いてモデルロバスト性を決定する新しい手法を提案する。
本フレームワークでは,学習モデルの堅牢性に及ぼすトレーニングサンプルサイズ,モデル重み,帰納的バイアスの影響について検討する。
論文 参考訳(メタデータ) (2025-05-22T20:05:20Z) - Statistical Deficiency for Task Inclusion Estimation [24.755448493709604]
タスクは機械学習の中心であり、現在のモデルの能力を評価する最も自然なオブジェクトである。
本研究では,2つのタスク間のbfインクルージョンを統計的に欠如の観点から計算する。
論文 参考訳(メタデータ) (2025-03-07T15:00:28Z) - Rethinking Meta-Learning from a Learning Lens [35.98940987691948]
メタラーニングの理論的理解と実践的実践のギャップを埋める方法について考察する。
タスク関係を利用してメタ学習を校正するプラグイン・アンド・プレイ方式TRLearnerを提案する。
論文 参考訳(メタデータ) (2024-09-13T02:00:16Z) - A Generalized Acquisition Function for Preference-based Reward Learning [12.158619866176487]
優先度に基づく報酬学習は、ロボットや自律システムに対して、人間がタスクを実行したいと望む方法を教えるための一般的なテクニックである。
従来の研究では、報酬関数パラメータに関する情報獲得を最大化するために、嗜好クエリを積極的に合成することで、データ効率が向上することが示されている。
本研究では, 報酬関数を行動同値クラスまで学習するためには, 行動上の同一ランク付け, 選択上の分布, その他の関連する2つの報酬の類似性の定義などの最適化が可能であることを示す。
論文 参考訳(メタデータ) (2024-03-09T20:32:17Z) - Transformer-based Causal Language Models Perform Clustering [20.430255724239448]
簡単な指示追従タスクを導入し、合成データセットを用いてトランスフォーマーに基づく因果言語モデルを分析する。
本研究は,本モデルが隠れ空間内のデータをクラスタリングすることで,タスク固有の情報を学習し,学習中にこのクラスタリングプロセスが動的に進化することを示唆している。
論文 参考訳(メタデータ) (2024-02-19T14:02:31Z) - What Makes Pre-Trained Visual Representations Successful for Robust
Manipulation? [57.92924256181857]
照明やシーンテクスチャの微妙な変化の下では,操作や制御作業のために設計された視覚表現が必ずしも一般化されないことがわかった。
創発的セグメンテーション能力は,ViTモデルにおける分布外一般化の強い予測因子であることがわかった。
論文 参考訳(メタデータ) (2023-11-03T18:09:08Z) - Visual Affordance Prediction for Guiding Robot Exploration [56.17795036091848]
我々は,ロボット探索を導くための視覚能力の学習手法を開発した。
VQ-VAEの潜伏埋め込み空間における条件分布の学習にはTransformerベースのモデルを用いる。
本稿では,ロボット操作における視覚的目標条件付きポリシー学習において,目標サンプリング分布として機能することで探索を導くために,トレーニングされた余裕モデルをどのように利用できるかを示す。
論文 参考訳(メタデータ) (2023-05-28T17:53:09Z) - Programmatically Grounded, Compositionally Generalizable Robotic
Manipulation [35.12811184353626]
意味表現を統合化するための従来の事前学習ファインタニングパイプラインは、ドメイン固有の行動情報の学習に絡み合っていることを示す。
本稿では,言語命令の統語的構造と意味的構造を利用して,事前学習モデルを活用するモジュール方式を提案する。
我々のモデルは、様々な操作行動において、ゼロショットと合成の一般化を改善するために、動作と知覚をうまく切り離すことに成功している。
論文 参考訳(メタデータ) (2023-04-26T20:56:40Z) - CIPER: Combining Invariant and Equivariant Representations Using
Contrastive and Predictive Learning [6.117084972237769]
比較不変性と予測同変表現学習(CIPER)を導入する。
CIPERは、1つの共有エンコーダとエンコーダの上の2つの異なる出力ヘッドを用いて、不変および同変学習目的を含む。
我々は静的な画像タスクと時間拡張された画像データセットについて評価する。
論文 参考訳(メタデータ) (2023-02-05T07:50:46Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
検索ベースの機械学習手法は、幅広い問題で成功をおさめた。
これらのモデルの約束を示す文献が増えているにもかかわらず、そのようなモデルの理論的基盤はいまだに解明されていない。
本稿では,その一般化能力を特徴付けるために,検索ベースモデルの形式的処理を行う。
論文 参考訳(メタデータ) (2022-10-06T00:33:01Z) - Task Formulation Matters When Learning Continually: A Case Study in
Visual Question Answering [58.82325933356066]
継続的な学習は、以前の知識を忘れずに、一連のタスクでモデルを漸進的にトレーニングすることを目的としている。
本稿では,視覚的質問応答において,異なる設定がパフォーマンスに与える影響について詳細に検討する。
論文 参考訳(メタデータ) (2022-09-30T19:12:58Z) - Deep transfer learning for partial differential equations under
conditional shift with DeepONet [0.0]
深層演算子ネットワーク(DeepONet)を用いた条件シフト下でのタスク固有学習のための新しいTLフレームワークを提案する。
条件埋め込み演算子理論に触発されて、ソース領域とターゲット特徴領域の間の統計的距離を測定する。
提案するTLフレームワークは,ソースドメインとターゲットドメインの間に大きな違いがあるにも関わらず,高速かつ効率的なマルチタスク演算子学習を可能にする。
論文 参考訳(メタデータ) (2022-04-20T23:23:38Z) - Pre-Trained Language Models for Interactive Decision-Making [72.77825666035203]
目的と観測を埋め込みのシーケンスとして表現する模倣学習の枠組みを述べる。
このフレームワークは様々な環境にまたがって効果的な一般化を可能にすることを実証する。
新たなゴールや新しいシーンを含むテストタスクでは、言語モデルによる初期化ポリシーはタスク完了率を43.6%改善する。
論文 参考訳(メタデータ) (2022-02-03T18:55:52Z) - Visual Transformer for Task-aware Active Learning [49.903358393660724]
プールベースのアクティブラーニングのための新しいパイプラインを提案する。
提案手法は,学習中に使用可能なアンラベリング例を利用して,ラベル付き例との相関関係を推定する。
ビジュアルトランスフォーマーは、ラベル付き例と非ラベル付き例の間の非ローカルビジュアル概念依存性をモデル化する。
論文 参考訳(メタデータ) (2021-06-07T17:13:59Z) - Model-Based Visual Planning with Self-Supervised Functional Distances [104.83979811803466]
モデルに基づく視覚的目標達成のための自己監視手法を提案する。
私たちのアプローチは、オフラインでラベルなしのデータを使って完全に学習します。
このアプローチは,モデルフリーとモデルベース先行手法の両方で大幅に性能が向上することがわかった。
論文 参考訳(メタデータ) (2020-12-30T23:59:09Z) - A Weighted Solution to SVM Actionability and Interpretability [0.0]
実行可能性(Actionability)は、機械学習モデルの解釈可能性や説明可能性と同じくらい重要であり、進行中で重要な研究トピックである。
本稿では,線形SVMモデルと非線形SVMモデルの両方において,動作可能性の問題に対する解を求める。
論文 参考訳(メタデータ) (2020-12-06T20:35:25Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z) - Three Approaches for Personalization with Applications to Federated
Learning [68.19709953755238]
本稿では,パーソナライゼーションの体系的学習理論について述べる。
学習理論の保証と効率的なアルゴリズムを提供し、その性能を実証する。
全てのアルゴリズムはモデルに依存しず、任意の仮説クラスで機能する。
論文 参考訳(メタデータ) (2020-02-25T01:36:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。