Quantized dynamics in closed quantum systems
- URL: http://arxiv.org/abs/2012.03714v1
- Date: Mon, 7 Dec 2020 14:15:46 GMT
- Title: Quantized dynamics in closed quantum systems
- Authors: K. Ziegler
- Abstract summary: We propose an approach to process data from interferometric measurements on a closed quantum system at random times.
A classical limit exists which is separated from the quantum fluctuations.
Some generic properties are linked to a quantized Berry phase.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an approach to process data from interferometric measurements on a
closed quantum system at random times. For this purpose a time correlation
matrix is introduced which enables us to extract dynamical properties of the
quantum system. After defining a generalized expectation value we obtain a
distribution of time scales, an average transition time and a correlation time.
A classical limit exists which is separated from the quantum fluctuations. The
latter are characterized by resonances associated with poles of the generalized
expectation value. Its analytic behavior is studied and some generic properties
are linked to a quantized Berry phase.
Related papers
- Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Quantum speed limits on operator flows and correlation functions [0.0]
Quantum speed limits (QSLs) identify fundamental time scales of physical processes by providing lower bounds on the rate of change of a quantum state or the expectation value of an observable.
We derive two types of QSLs and assess the existence of a crossover between them, that we illustrate with a qubit and a random matrix Hamiltonian.
We further apply our results to the time evolution of autocorrelation functions, obtaining computable constraints on the linear response of quantum systems out of equilibrium and the quantum Fisher information governing the precision in quantum parameter estimation.
arXiv Detail & Related papers (2022-07-12T18:00:07Z) - Quantum-classical entropy analysis for nonlinearly-coupled
continuous-variable bipartite systems [0.0]
We investigate the behavior of classical analogs arising upon the removal of interference traits.
By comparing the quantum and classical entropy values, it is shown that, instead of entanglement production, such entropies rather provide us with information.
arXiv Detail & Related papers (2021-11-19T11:39:15Z) - Quantum estimation of a time dependent perturbation [0.0]
We analyze the estimation of a time dependent perturbation acting on a quantum system.
We combine quantum measurement theory and classical filter theory into a time evolving hybrid quantum and classical trajectory.
arXiv Detail & Related papers (2021-06-06T12:11:39Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Taking snapshots of a quantum thermalization process: emergent
classicality in quantum jump trajectories [0.0]
We show via a random matrix theory approach to nonintegrable quantum systems that the set of outcomes of the measurement of a macroscopic observable evolve in time like variables.
Our results show how to extend the framework of eigenstate thermalization to the prediction of properties of quantum measurements on an otherwise closed quantum system.
arXiv Detail & Related papers (2020-03-18T18:32:47Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Many-Body Dephasing in a Trapped-Ion Quantum Simulator [0.0]
How a closed interacting quantum many-body system relaxes and dephases as a function of time is a fundamental question in thermodynamic and statistical physics.
We analyse and observe the persistent temporal fluctuations after a quantum quench of a tunable long-range interacting transverse-field Ising Hamiltonian realized with a trapped-ion quantum simulator.
arXiv Detail & Related papers (2020-01-08T12:33:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.