Quantum speed limits on operator flows and correlation functions
- URL: http://arxiv.org/abs/2207.05769v3
- Date: Mon, 19 Dec 2022 15:28:31 GMT
- Title: Quantum speed limits on operator flows and correlation functions
- Authors: Nicoletta Carabba, Niklas H\"ornedal, Adolfo del Campo
- Abstract summary: Quantum speed limits (QSLs) identify fundamental time scales of physical processes by providing lower bounds on the rate of change of a quantum state or the expectation value of an observable.
We derive two types of QSLs and assess the existence of a crossover between them, that we illustrate with a qubit and a random matrix Hamiltonian.
We further apply our results to the time evolution of autocorrelation functions, obtaining computable constraints on the linear response of quantum systems out of equilibrium and the quantum Fisher information governing the precision in quantum parameter estimation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum speed limits (QSLs) identify fundamental time scales of physical
processes by providing lower bounds on the rate of change of a quantum state or
the expectation value of an observable. We introduce a generalization of QSL
for unitary operator flows, which are ubiquitous in physics and relevant for
applications in both the quantum and classical domains. We derive two types of
QSLs and assess the existence of a crossover between them, that we illustrate
with a qubit and a random matrix Hamiltonian, as canonical examples. We further
apply our results to the time evolution of autocorrelation functions, obtaining
computable constraints on the linear dynamical response of quantum systems out
of equilibrium and the quantum Fisher information governing the precision in
quantum parameter estimation.
Related papers
- Quantum steering ellipsoids and quantum obesity in critical systems [0.0]
Quantum obesity (QO) is new function used to quantify quantum correlations beyond entanglement.
We show that QO is a fundamental quantity to observe signature of quantum phase transitions.
arXiv Detail & Related papers (2023-12-19T19:14:08Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Sampling, rates, and reaction currents through reverse stochastic
quantization on quantum computers [0.0]
We show how to tackle the problem using a suitably quantum computer.
We propose a hybrid quantum-classical sampling scheme to escape local minima.
arXiv Detail & Related papers (2021-08-25T18:04:52Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantized dynamics in closed quantum systems [0.0]
We propose an approach to process data from interferometric measurements on a closed quantum system at random times.
A classical limit exists which is separated from the quantum fluctuations.
Some generic properties are linked to a quantized Berry phase.
arXiv Detail & Related papers (2020-12-07T14:15:46Z) - Floquet engineering of continuous-time quantum walks: towards the
simulation of complex and next-to-nearest neighbor couplings [0.0]
We apply the idea of Floquet engineering in the context of continuous-time quantum walks on graphs.
We define periodically-driven Hamiltonians which can be used to simulate the dynamics of certain target quantum walks.
Our work provides explicit simulation protocols that may be used for directing quantum transport, engineering the dispersion relation of one-dimensional quantum walks or investigating quantum dynamics in highly connected structures.
arXiv Detail & Related papers (2020-12-01T12:46:56Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Classical and statistical limits of the quantum singular oscillator [0.0]
Weyl-Wigner phase-space and Bohmian mechanics frameworks are used.
Two inequivalent quantum systems are shown to be statistically equivalent at thermal equilibrium.
arXiv Detail & Related papers (2020-07-10T19:07:33Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.