A predictive model for kidney transplant graft survival using machine
learning
- URL: http://arxiv.org/abs/2012.03787v1
- Date: Mon, 7 Dec 2020 15:29:51 GMT
- Title: A predictive model for kidney transplant graft survival using machine
learning
- Authors: Eric S. Pahl, W. Nick Street, Hans J. Johnson, Alan I. Reed
- Abstract summary: A machine learning method may provide improved prediction of transplant outcomes and help decision-making.
A popular tree-based machine learning method, random forest, was trained and evaluated.
The random forest predicted significantly more successful and longer-surviving transplants than the risk index.
- Score: 1.514049362441354
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kidney transplantation is the best treatment for end-stage renal failure
patients. The predominant method used for kidney quality assessment is the Cox
regression-based, kidney donor risk index. A machine learning method may
provide improved prediction of transplant outcomes and help decision-making. A
popular tree-based machine learning method, random forest, was trained and
evaluated with the same data originally used to develop the risk index (70,242
observations from 1995-2005). The random forest successfully predicted an
additional 2,148 transplants than the risk index with equal type II error rates
of 10%. Predicted results were analyzed with follow-up survival outcomes up to
240 months after transplant using Kaplan-Meier analysis and confirmed that the
random forest performed significantly better than the risk index (p<0.05). The
random forest predicted significantly more successful and longer-surviving
transplants than the risk index. Random forests and other machine learning
models may improve transplant decisions.
Related papers
- Optimizing Hard-to-Place Kidney Allocation: A Machine Learning Approach to Center Ranking [0.4893345190925178]
This paper proposes a data-driven, machine learning-based ranking system for allocating hard-to-place kidneys to centers.
Our experiments demonstrate that the proposed policy can reduce the average number of centers considered before placement by fourfold for all kidneys and tenfold for hard-to-place kidneys.
arXiv Detail & Related papers (2024-10-10T17:15:41Z) - Predicting Long-Term Allograft Survival in Liver Transplant Recipients [11.680219281917076]
Liver allograft failure occurs in approximately 20% of liver transplant recipients within five years post-transplant.
We introduce the Model for Allograft Survival (MAS), a simple linear risk score that outperforms other advanced survival models.
arXiv Detail & Related papers (2024-08-10T04:44:36Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - Penalties and Rewards for Fair Learning in Paired Kidney Exchange
Programs [4.963350442999301]
A kidney exchange program, also called a kidney paired donation program, can be viewed as a repeated, dynamic trading and allocation mechanism.
We confirm this hypothesis using a full scale simulation of the Canadian Kidney Paired Donation Program.
We find that the most critical factor in determining the performance of a kidney exchange program is not the judicious assignment of positive weights (rewards) to patient-donor pairs.
arXiv Detail & Related papers (2023-09-23T16:25:49Z) - A Transformer-Based Deep Learning Approach for Fairly Predicting
Post-Liver Transplant Risk Factors [19.00784227522497]
Liver transplantation is a life-saving procedure for patients with end-stage liver disease.
Current scoring system evaluates a patient's mortality risk if not receiving an organ within 90 days.
Post-transplant risk factors, such as cardiovascular disease, chronic rejection, etc., are common complications after transplant.
arXiv Detail & Related papers (2023-04-05T22:54:26Z) - Fairly Predicting Graft Failure in Liver Transplant for Organ Assigning [61.30094367351618]
Liver transplant is an essential therapy performed for severe liver diseases.
Machine learning models could be unfair and trigger bias against certain groups of people.
This work proposes a fair machine learning framework targeting graft failure prediction in liver transplant.
arXiv Detail & Related papers (2023-02-18T18:24:58Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
We develop a deep learning framework that can accurately predict and visualize the progression of osteolytic bone lesions.
It will assist in planning and evaluating treatment strategies to prevent skeletal related events (SREs) in breast cancer patients.
arXiv Detail & Related papers (2022-03-20T21:00:10Z) - On the explainability of hospitalization prediction on a large COVID-19
patient dataset [45.82374977939355]
We develop various AI models to predict hospitalization on a large (over 110$k$) cohort of COVID-19 positive-tested US patients.
Despite high data unbalance, the models reach average precision 0.96-0.98 (0.75-0.85), recall 0.96-0.98 (0.74-0.85), and $F_score 0.97-0.98 (0.79-0.83) on the non-hospitalized (or hospitalized) class.
arXiv Detail & Related papers (2021-10-28T10:23:38Z) - Joint Prediction and Time Estimation of COVID-19 Developing Severe
Symptoms using Chest CT Scan [49.209225484926634]
We propose a joint classification and regression method to determine whether the patient would develop severe symptoms in the later time.
To do this, the proposed method takes into account 1) the weight for each sample to reduce the outliers' influence and explore the problem of imbalance classification.
Our proposed method yields 76.97% of accuracy for predicting the severe cases, 0.524 of the correlation coefficient, and 0.55 days difference for the converted time.
arXiv Detail & Related papers (2020-05-07T12:16:37Z) - Gradient Boosting on Decision Trees for Mortality Prediction in
Transcatheter Aortic Valve Implantation [5.050648346154715]
Current prognostic risk scores in cardiac surgery are based on statistics and do not yet benefit from machine learning.
This research aims to create a machine learning model to predict one-year mortality of a patient after TAVI.
arXiv Detail & Related papers (2020-01-08T10:04:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.