Dynamic Anchor Learning for Arbitrary-Oriented Object Detection
- URL: http://arxiv.org/abs/2012.04150v2
- Date: Tue, 15 Dec 2020 13:18:28 GMT
- Title: Dynamic Anchor Learning for Arbitrary-Oriented Object Detection
- Authors: Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Hongwei Zhang, Linhao Li
- Abstract summary: Arbitrary-oriented objects widely appear in natural scenes, aerial photographs, remote sensing images, etc.
Current rotation detectors use plenty of anchors with different orientations to achieve spatial alignment with ground truth boxes.
We propose a dynamic anchor learning (DAL) method, which utilizes the newly defined matching degree.
- Score: 4.247967690041766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Arbitrary-oriented objects widely appear in natural scenes, aerial
photographs, remote sensing images, etc., thus arbitrary-oriented object
detection has received considerable attention. Many current rotation detectors
use plenty of anchors with different orientations to achieve spatial alignment
with ground truth boxes, then Intersection-over-Union (IoU) is applied to
sample the positive and negative candidates for training. However, we observe
that the selected positive anchors cannot always ensure accurate detections
after regression, while some negative samples can achieve accurate
localization. It indicates that the quality assessment of anchors through IoU
is not appropriate, and this further lead to inconsistency between
classification confidence and localization accuracy. In this paper, we propose
a dynamic anchor learning (DAL) method, which utilizes the newly defined
matching degree to comprehensively evaluate the localization potential of the
anchors and carry out a more efficient label assignment process. In this way,
the detector can dynamically select high-quality anchors to achieve accurate
object detection, and the divergence between classification and regression will
be alleviated. With the newly introduced DAL, we achieve superior detection
performance for arbitrary-oriented objects with only a few horizontal preset
anchors. Experimental results on three remote sensing datasets HRSC2016, DOTA,
UCAS-AOD as well as a scene text dataset ICDAR 2015 show that our method
achieves substantial improvement compared with the baseline model. Besides, our
approach is also universal for object detection using horizontal bound box. The
code and models are available at https://github.com/ming71/DAL.
Related papers
- Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - SOOD: Towards Semi-Supervised Oriented Object Detection [57.05141794402972]
This paper proposes a novel Semi-supervised Oriented Object Detection model, termed SOOD, built upon the mainstream pseudo-labeling framework.
Our experiments show that when trained with the two proposed losses, SOOD surpasses the state-of-the-art SSOD methods under various settings on the DOTA-v1.5 benchmark.
arXiv Detail & Related papers (2023-04-10T11:10:42Z) - Dynamic Label Assignment for Object Detection by Combining Predicted and
Anchor IoUs [20.41563386339572]
We introduce a simple and effective approach to perform label assignment dynamically based on the training status with predictions.
Our approach shows improvements in the performance of the detection models with the adaptive label assignment algorithm.
arXiv Detail & Related papers (2022-01-23T23:14:07Z) - Anchor Retouching via Model Interaction for Robust Object Detection in
Aerial Images [15.404024559652534]
We present an effective Dynamic Enhancement Anchor (DEA) network to construct a novel training sample generator.
Our method achieves state-of-the-art performance in accuracy with moderate inference speed and computational overhead for training.
arXiv Detail & Related papers (2021-12-13T14:37:20Z) - Pseudo-IoU: Improving Label Assignment in Anchor-Free Object Detection [60.522877583407904]
Current anchor-free object detectors are quite simple and effective yet lack accurate label assignment methods.
We present Pseudo-Intersection-over-Union(Pseudo-IoU): a simple metric that brings more standardized and accurate assignment rule into anchor-free object detection frameworks.
Our method achieves comparable performance to other recent state-of-the-art anchor-free methods without bells and whistles.
arXiv Detail & Related papers (2021-04-29T02:48:47Z) - CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented
Object Detection in Remote Sensing Images [0.9462808515258465]
In this paper, we discuss the role of discriminative features in object detection.
We then propose a Critical Feature Capturing Network (CFC-Net) to improve detection accuracy.
We show that our method achieves superior detection performance compared with many state-of-the-art approaches.
arXiv Detail & Related papers (2021-01-18T02:31:09Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z) - Align Deep Features for Oriented Object Detection [40.28244152216309]
We propose a single-shot Alignment Network (S$2$A-Net) consisting of two modules: a Feature Alignment Module (FAM) and an Oriented Detection Module (ODM)
The FAM can generate high-quality anchors with an Anchor Refinement Network and adaptively align the convolutional features according to the anchor boxes with a novel Alignment Convolution.
The ODM first adopts active rotating filters to encode the orientation information and then produces orientation-sensitive and orientation-invariant features to alleviate the inconsistency between classification score and localization accuracy.
arXiv Detail & Related papers (2020-08-21T09:55:13Z) - AutoAssign: Differentiable Label Assignment for Dense Object Detection [94.24431503373884]
Auto COCO is an anchor-free detector for object detection.
It achieves appearance-aware through a fully differentiable weighting mechanism.
Our best model achieves 52.1% AP, outperforming all existing one-stage detectors.
arXiv Detail & Related papers (2020-07-07T14:32:21Z) - Scope Head for Accurate Localization in Object Detection [135.9979405835606]
We propose a novel detector coined as ScopeNet, which models anchors of each location as a mutually dependent relationship.
With our concise and effective design, the proposed ScopeNet achieves state-of-the-art results on COCO.
arXiv Detail & Related papers (2020-05-11T04:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.