SU(2)-in-SU(1,1) Nested Interferometer for Highly Sensitive,
Loss-Tolerant Quantum Metrology
- URL: http://arxiv.org/abs/2004.14266v2
- Date: Wed, 13 Jul 2022 13:03:06 GMT
- Title: SU(2)-in-SU(1,1) Nested Interferometer for Highly Sensitive,
Loss-Tolerant Quantum Metrology
- Authors: Wei Du, Jia Kong, Jun Jia, Sheng Ming, Chun-Hua Yuan, J.F.Chen,
Z.Y.Ou, Morgan W. Mitchell, and Weiping Zhang
- Abstract summary: We present a new interferometer topology that nests a SU(2) interferometer, e.g., a Mach-Zehnder or Michelson interferometer, inside a SU(1,1) interferometer.
This interferometer achieves high signal-to-noise ratio (SNR) and tolerance to photon losses external to the interferometer, e.g., in detectors.
- Score: 2.2066285179245337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present experimental and theoretical results on a new interferometer
topology that nests a SU(2) interferometer, e.g., a Mach-Zehnder or Michelson
interferometer, inside a SU(1,1) interferometer, i.e., a Mach-Zehnder
interferometer with parametric amplifiers in place of beam splitters. This
SU(2)-in-SU(1,1) nested interferometer (SISNI) simultaneously achieves high
signal-to-noise ratio (SNR), sensitivity beyond the standard quantum limit
(SQL) and tolerance to photon losses external to the interferometer, e.g., in
detectors. We implement a SISNI using parametric amplification by four-wave
mixing (FWM) in Rb vapor and a laser-fed Mach-Zehnder SU(2) interferometer. We
observe path-length sensitivity with SNR 2.2 dB beyond the SQL at power levels
(and thus SNR) 2 orders of magnitude beyond those of previous loss-tolerant
interferometers. We find experimentally the optimal FWM gains and find
agreement with a minimal quantum noise model for the FWM process. The results
suggest ways to boost the in-practice sensitivity of high-power
interferometers, e.g., gravitational wave interferometers, and may enable
high-sensitivity, quantum-enhanced interferometry at wavelengths for which
efficient detectors are not available.
Related papers
- Improved phase sensitivity of an SU(1,1) interferometer based on the internal single-path local squeezing operation [0.0]
Internal single-path LSO scheme can enhance the phase sensitivity and the quantum Fisher information.
A larger squeezing parameter r leads to a better performance of the interferometer.
arXiv Detail & Related papers (2024-10-13T12:38:51Z) - Low-loss Millimeter-wave Resonators with an Improved Coupling Structure [39.76747788992184]
Millimeter-wave superconducting resonators are a useful tool for studying quantum device coherence in a new frequency domain.
We develop and characterize a tapered transition structure coupling a rectangular waveguide to a planar slotline waveguide with better than 0.5 dB efficiency over 14 GHz.
Having decoupled the resonators from radiative losses, we consistently achieve single-photon quality factors above $105$, with a two-level-system loss limit above $106$.
arXiv Detail & Related papers (2023-11-03T02:26:44Z) - Atom interferometry with coherent enhancement of Bragg pulse sequences [41.94295877935867]
We demonstrate momentum splitting up to 200 photon recoils in an ultra-cold atom interferometer.
We highlight a new mechanism of destructive interference of the losses leading to a sizeable efficiency enhancement of the beam splitters.
arXiv Detail & Related papers (2023-05-16T15:00:05Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Large-momentum-transfer atom interferometers with $\mu$rad-accuracy
using Bragg diffraction [0.0]
LMT atom interferometers using elastic Bragg scattering on light waves are among the most precise quantum sensors to date.
We develop an analytic model for the interferometer signal and demonstrate its accuracy using comprehensive numerical simulations.
arXiv Detail & Related papers (2022-08-13T13:31:29Z) - Two-colour spectrally multimode integrated SU(1,1) interferometer [77.34726150561087]
We develop and investigate an integrated multimode two-colour SU (1,1) interferometer that operates in a supersensitive mode.
By ensuring a proper design of the integrated platform, we suppress dispersion and thereby significantly increase the visibility of the interference pattern.
We demonstrate that such an interferometer overcomes the classical phase sensitivity limit for wide parametric gain ranges, when up to $3*104$ photons are generated.
arXiv Detail & Related papers (2022-02-10T13:30:42Z) - Quantum non-demolition measurement based on an
SU(1,1)-SU(2)-concatenated atom-light hybrid interferometer [0.5249805590164902]
Quantum non-demolition (QND) measurement is an important tool in the field of quantum information processing and quantum optics.
In this paper, we present an SU(1,1)-SU(2)-concatenated atom-light hybrid interferometer, and theoretically study the QND measurement of photon number.
arXiv Detail & Related papers (2021-05-29T05:03:23Z) - Towards probing for hypercomplex quantum mechanics in a waveguide
interferometer [55.41644538483948]
We experimentally investigate the suitability of a multi-path waveguide interferometer with mechanical shutters for performing a test for hypercomplex quantum mechanics.
We systematically analyse the influence of experimental imperfections that could lead to a false-positive test result.
arXiv Detail & Related papers (2021-04-23T13:20:07Z) - Phase sensitivity approaching quantum Cramer-Rao bound in a modified
SU(1,1) interferometer [5.222964691649603]
We propose a new protocol based on a modified SU(1,1) interferometer, where the second nonlinear element is replaced by a beam splitter.
Our analysis suggests that the protocol can achieve sub-shot-noise-limited phase sensitivity and is robust against photon loss and background noise.
arXiv Detail & Related papers (2020-12-08T06:09:38Z) - Spectrally multimode integrated SU(1,1) interferometer [50.591267188664666]
The presented interferometer includes a polarization converter between two photon sources and utilizes a continuous-wave (CW) pump.
We show that this configuration results in almost perfect destructive interference at the output and supersensitivity regions below the classical limit.
arXiv Detail & Related papers (2020-12-07T14:42:54Z) - Quantum interferometer combining squeezing and parametric amplification [1.099380072835174]
The sensitivity improvement of $4.86pm 0.24$ dB beyond the standard quantum limit is deterministically realized.
This interferometric system has significantly potential applications in a variety of measurements for tiny variances of physical quantities.
arXiv Detail & Related papers (2020-05-05T01:52:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.