Deep Lesion Tracker: Monitoring Lesions in 4D Longitudinal Imaging
Studies
- URL: http://arxiv.org/abs/2012.04872v2
- Date: Mon, 12 Apr 2021 16:53:41 GMT
- Title: Deep Lesion Tracker: Monitoring Lesions in 4D Longitudinal Imaging
Studies
- Authors: Jinzheng Cai, Youbao Tang, Ke Yan, Adam P. Harrison, Jing Xiao, Gigin
Lin, Le Lu
- Abstract summary: Deep lesion tracker (DLT) is a deep learning approach that uses both appearance- and anatomical-based signals.
We release the first lesion tracking benchmark, consisting of 3891 lesion pairs from the public DeepLesion database.
DLT generalizes well on an external clinical test set of 100 longitudinal studies, achieving 88% accuracy.
- Score: 19.890200389017213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monitoring treatment response in longitudinal studies plays an important role
in clinical practice. Accurately identifying lesions across serial imaging
follow-up is the core to the monitoring procedure. Typically this incorporates
both image and anatomical considerations. However, matching lesions manually is
labor-intensive and time-consuming. In this work, we present deep lesion
tracker (DLT), a deep learning approach that uses both appearance- and
anatomical-based signals. To incorporate anatomical constraints, we propose an
anatomical signal encoder, which prevents lesions being matched with visually
similar but spurious regions. In addition, we present a new formulation for
Siamese networks that avoids the heavy computational loads of 3D
cross-correlation. To present our network with greater varieties of images, we
also propose a self-supervised learning (SSL) strategy to train trackers with
unpaired images, overcoming barriers to data collection. To train and evaluate
our tracker, we introduce and release the first lesion tracking benchmark,
consisting of 3891 lesion pairs from the public DeepLesion database. The
proposed method, DLT, locates lesion centers with a mean error distance of 7
mm. This is 5% better than a leading registration algorithm while running 14
times faster on whole CT volumes. We demonstrate even greater improvements over
detector or similarity-learning alternatives. DLT also generalizes well on an
external clinical test set of 100 longitudinal studies, achieving 88% accuracy.
Finally, we plug DLT into an automatic tumor monitoring workflow where it leads
to an accuracy of 85% in assessing lesion treatment responses, which is only
0.46% lower than the accuracy of manual inputs.
Related papers
- Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images [45.29301790646322]
Computer-aided diagnosis can help with early lung nodul detection and facilitate subsequent nodule characterization.
We propose CADe, for segmenting lung nodules in a zero-shot manner using a variant of the Segment Anything Model called MedSAM.
We also propose, CADx, a method for the nodule characterization as benign/malignant by making a gallery of radiomic features and aligning image-feature pairs through contrastive learning.
arXiv Detail & Related papers (2024-07-02T19:30:25Z) - Weakly-Supervised Detection of Bone Lesions in CT [48.34559062736031]
The skeletal region is one of the common sites of metastatic spread of cancer in the breast and prostate.
We developed a pipeline to detect bone lesions in CT volumes via a proxy segmentation task.
Our method detected bone lesions in CT with a precision of 96.7% and recall of 47.3% despite the use of incomplete and partial training data.
arXiv Detail & Related papers (2024-01-31T21:05:34Z) - Swin-Tempo: Temporal-Aware Lung Nodule Detection in CT Scans as Video
Sequences Using Swin Transformer-Enhanced UNet [2.7547288571938795]
We present an innovative model that harnesses the strengths of both convolutional neural networks and vision transformers.
Inspired by object detection in videos, we treat each 3D CT image as a video, individual slices as frames, and lung nodules as objects, enabling a time-series application.
arXiv Detail & Related papers (2023-10-05T07:48:55Z) - Development of a Deep Learning Method to Identify Acute Ischemic Stroke
Lesions on Brain CT [38.06921198677509]
Deep learning techniques can provide automated CT brain scan assessment, but usually require annotated images.
We designed a convolutional neural network-based DL algorithm using routinely-collected CT brain scans from the Third International Stroke Trial (IST-3)
Our best-performing DL method achieved 72% accuracy for lesion presence and side.
arXiv Detail & Related papers (2023-09-29T15:28:16Z) - Mediastinal Lymph Node Detection and Segmentation Using Deep Learning [1.7188280334580195]
In clinical practice, computed tomography (CT) and positron emission tomography (PET) imaging detect abnormal lymph nodes (LNs)
Deep convolutional neural networks frequently segment items in medical photographs.
A well-established deep learning technique UNet was modified using bilinear and total generalized variation (TGV) based up strategy to segment and detect mediastinal lymph nodes.
The modified UNet maintains texture discontinuities, selects noisy areas, searches appropriate balance points through backpropagation, and recreates image resolution.
arXiv Detail & Related papers (2022-11-24T02:55:20Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
We propose an uncertainty-guided dual-consistency learning network (UDC-Net) for semi-supervised COVID-19 lesion segmentation from CT images.
Our proposed UDC-Net improves the fully supervised method by 6.3% in Dice and outperforms other competitive semi-supervised approaches by significant margins.
arXiv Detail & Related papers (2021-04-07T16:23:35Z) - COVID-19 identification from volumetric chest CT scans using a
progressively resized 3D-CNN incorporating segmentation, augmentation, and
class-rebalancing [4.446085353384894]
COVID-19 is a global pandemic disease overgrowing worldwide.
Computer-aided screening tools with greater sensitivity is imperative for disease diagnosis and prognosis.
This article proposes a 3D Convolutional Neural Network (CNN)-based classification approach.
arXiv Detail & Related papers (2021-02-11T18:16:18Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - 4D Deep Learning for Multiple Sclerosis Lesion Activity Segmentation [49.32653090178743]
We investigate whether extending this problem to full 4D deep learning using a history of MRI volumes can improve performance.
We find that our proposed architecture outperforms previous approaches with a lesion-wise true positive rate of 0.84 at a lesion-wise false positive rate of 0.19.
arXiv Detail & Related papers (2020-04-20T11:41:01Z) - Weakly Supervised Lesion Co-segmentation on CT Scans [18.58056402884405]
We propose a weakly-supervised co-segmentation model that first generates pseudo-masks from the RECIST slices.
We then use these as training labels for an attention-based convolutional neural network capable of segmenting common lesions from a pair of CT scans.
arXiv Detail & Related papers (2020-01-24T19:39:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.