論文の概要: Have convolutions already made recurrence obsolete for unconstrained
handwritten text recognition ?
- arxiv url: http://arxiv.org/abs/2012.04954v1
- Date: Wed, 9 Dec 2020 10:15:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-16 02:03:35.652472
- Title: Have convolutions already made recurrence obsolete for unconstrained
handwritten text recognition ?
- Title(参考訳): コンボリューションは、制約のない手書き文字認識のために既に廃止されているか?
- Authors: Denis Coquenet, Yann Soullard, Cl\'ement Chatelain, Thierry Paquet
- Abstract要約: 制約のない手書きテキスト認識は、ディープニューラルネットワークにとって重要な課題です。
リカレントネットワークとLong Short-Term Memory Networkはこの分野で最先端の性能を達成した。
RIMESデータセットを用いたオフライン手書き認識タスクにおける異なるアーキテクチャに関する実験的研究を提案する。
- 参考スコア(独自算出の注目度): 3.0969191504482247
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unconstrained handwritten text recognition remains an important challenge for
deep neural networks. These last years, recurrent networks and more
specifically Long Short-Term Memory networks have achieved state-of-the-art
performance in this field. Nevertheless, they are made of a large number of
trainable parameters and training recurrent neural networks does not support
parallelism. This has a direct influence on the training time of such
architectures, with also a direct consequence on the time required to explore
various architectures. Recently, recurrence-free architectures such as Fully
Convolutional Networks with gated mechanisms have been proposed as one possible
alternative achieving competitive results. In this paper, we explore
convolutional architectures and compare them to a CNN+BLSTM baseline. We
propose an experimental study regarding different architectures on an offline
handwriting recognition task using the RIMES dataset, and a modified version of
it that consists of augmenting the images with notebook backgrounds that are
printed grids.
- Abstract(参考訳): 制約のない手書き文字認識は、ディープニューラルネットワークにとって依然として重要な課題である。
この数年間、リカレントネットワークやより具体的にはロング短期記憶ネットワークがこの分野で最先端の性能を達成した。
それでも、多くのトレーニング可能なパラメータで構成されており、リカレントニューラルネットワークのトレーニングは並列性をサポートしていない。
これは、こうしたアーキテクチャのトレーニング時間に直接影響し、様々なアーキテクチャを探索するのに必要な時間に直接影響します。
近年, ゲート機構を備えた完全畳み込みネットワークのような再帰性のないアーキテクチャが, 競合的な結果を得るための一つの選択肢として提案されている。
本稿では,畳み込みアーキテクチャを探索し,CNN+BLSTMベースラインと比較する。
本稿では、rimesデータセットを用いたオフライン手書き認識タスクにおける異なるアーキテクチャに関する実験と、印刷されたグリッドであるノートブック背景による画像拡張による修正版を提案する。
関連論文リスト
- Centered Self-Attention Layers [89.21791761168032]
変圧器の自己保持機構とグラフニューラルネットワークのメッセージ通過機構を繰り返し適用する。
我々は、このアプリケーションが必然的に、より深い層での同様の表現に過剰なスムーシングをもたらすことを示す。
これらの機構の集約演算子に補正項を提示する。
論文 参考訳(メタデータ) (2023-06-02T15:19:08Z) - Deep Learning Architecture for Automatic Essay Scoring [0.0]
本稿では、リカレントネットワーク(RNN)と畳み込みニューラルネットワーク(CNN)に基づく新しいアーキテクチャを提案する。
提案アーキテクチャでは, 単語埋め込みベクトルから, 単語n-gramの文脈的特徴を学習し, 捉える。
提案方式は,他の深層学習に基づくAESシステムよりも格付け精度が高い。
論文 参考訳(メタデータ) (2022-06-16T14:56:24Z) - Neural Architecture Search for Dense Prediction Tasks in Computer Vision [74.9839082859151]
ディープラーニングは、ニューラルネットワークアーキテクチャエンジニアリングに対する需要の高まりにつながっている。
ニューラルネットワーク検索(NAS)は、手動ではなく、データ駆動方式でニューラルネットワークアーキテクチャを自動設計することを目的としている。
NASはコンピュータビジョンの幅広い問題に適用されている。
論文 参考訳(メタデータ) (2022-02-15T08:06:50Z) - SIRe-Networks: Skip Connections over Interlaced Multi-Task Learning and
Residual Connections for Structure Preserving Object Classification [28.02302915971059]
本稿では、オブジェクト分類タスクにおける消失勾配を低減するために、SIReを定義したインターレース型マルチタスク学習戦略を提案する。
提案手法は、自動エンコーダを介して入力画像構造を保存することにより、畳み込みニューラルネットワーク(CNN)を直接改善する。
提案手法を検証するため、SIRe戦略を介して単純なCNNと有名なネットワークの様々な実装を拡張し、CIFAR100データセットで広範囲にテストする。
論文 参考訳(メタデータ) (2021-10-06T13:54:49Z) - Applications of Recurrent Neural Network for Biometric Authentication &
Anomaly Detection [0.0]
リカレントニューラルネットワークは、データを一時シーケンスで保存し、参照できるようにする強力な機械学習フレームワークである。
本稿では, 生体認証, 表現認識, 異常検出, 航空機への適用の4つの重要な分野において, RNNの現状について検討する。
論文 参考訳(メタデータ) (2021-09-13T04:37:18Z) - Multi-Exit Vision Transformer for Dynamic Inference [88.17413955380262]
視覚変換器のバックボーンの動的推論に使用できる早期出口分岐のための7つの異なるアーキテクチャを提案する。
提案したアーキテクチャのそれぞれが,精度と速度のトレードオフにおいて有用であることを示す。
論文 参考訳(メタデータ) (2021-06-29T09:01:13Z) - Recurrence-free unconstrained handwritten text recognition using gated
fully convolutional network [2.277447144331876]
制約のない手書きテキスト認識は、ほとんどのドキュメント分析タスクの主要なステップです。
LSTM細胞を使用する別の方法の1つは、畳み込み層を多用して長期記憶損失を補うことである。
我々は、よく知られたCNN+LSTMアーキテクチャの再発のない代替であるGated Fully Convolutional Networkアーキテクチャを紹介します。
論文 参考訳(メタデータ) (2020-12-09T10:30:13Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
我々はスケルトンに基づく行動認識のためのシンプルで高度にモジュール化されたグラフ畳み込みネットワークアーキテクチャを設計する。
ネットワークは,空間的および時間的経路から多粒度情報を集約するビルディングブロックを繰り返すことで構築される。
論文 参考訳(メタデータ) (2020-11-26T14:43:04Z) - EASTER: Efficient and Scalable Text Recognizer [0.0]
本稿では,機械印刷版と手書き版の両方で光学文字認識を行うための高能率かつスケーラブルなTExt認識器(EASTER)を提案する。
このモデルでは1次元畳み込み層を再帰なく利用し,データ量を大幅に削減した並列トレーニングを実現している。
また、オフライン手書きテキスト認識タスクにおいて、現在の最良の結果よりも改善点を示す。
論文 参考訳(メタデータ) (2020-08-18T10:26:03Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
本稿では,マルチスケール学習を対象とする,漸進的に訓練された再帰的アーキテクチャを提案する。
隠れた状態を異なるモジュールに分割することで、シンプルなRNNのアーキテクチャを拡張する方法を示す。
新しいモジュールがモデルに反復的に追加され、徐々に長い依存関係を学習するトレーニングアルゴリズムについて議論する。
論文 参考訳(メタデータ) (2020-06-29T08:35:49Z) - Recognizing Long Grammatical Sequences Using Recurrent Networks
Augmented With An External Differentiable Stack [73.48927855855219]
リカレントニューラルネットワーク(RNN)は、シーケンスモデリング、生成、予測に広く使われているディープアーキテクチャである。
RNNは、非常に長いシーケンスに対してあまり一般化せず、多くの重要な時間的処理や時系列予測問題に適用性を制限する。
これらの欠点に対処する方法の1つは、スタックのような外部の異なるメモリ構造とRNNを結合することである。
本稿では,重要なアーキテクチャと状態更新機構を備えたメモリ拡張RNNを改良する。
論文 参考訳(メタデータ) (2020-04-04T14:19:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。