論文の概要: Applications of Recurrent Neural Network for Biometric Authentication &
Anomaly Detection
- arxiv url: http://arxiv.org/abs/2109.05701v1
- Date: Mon, 13 Sep 2021 04:37:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-15 10:13:59.345216
- Title: Applications of Recurrent Neural Network for Biometric Authentication &
Anomaly Detection
- Title(参考訳): 生体認証・異常検出におけるリカレントニューラルネットワークの適用
- Authors: Joseph M. Ackerson, Dave Rushit, Seliya Jim
- Abstract要約: リカレントニューラルネットワークは、データを一時シーケンスで保存し、参照できるようにする強力な機械学習フレームワークである。
本稿では, 生体認証, 表現認識, 異常検出, 航空機への適用の4つの重要な分野において, RNNの現状について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recurrent Neural Networks are powerful machine learning frameworks that allow
for data to be saved and referenced in a temporal sequence. This opens many new
possibilities in fields such as handwriting analysis and speech recognition.
This paper seeks to explore current research being conducted on RNNs in four
very important areas, being biometric authentication, expression recognition,
anomaly detection, and applications to aircraft. This paper reviews the
methodologies, purpose, results, and the benefits and drawbacks of each
proposed method below. These various methodologies all focus on how they can
leverage distinct RNN architectures such as the popular Long Short-Term Memory
(LSTM) RNN or a Deep-Residual RNN. This paper also examines which frameworks
work best in certain situations, and the advantages and disadvantages of each
pro-posed model.
- Abstract(参考訳): リカレントニューラルネットワークは、データを一時シーケンスで保存し、参照できるようにする強力な機械学習フレームワークである。
これは手書き解析や音声認識といった分野において、多くの新しい可能性を開く。
本稿では, 生体認証, 表現認識, 異常検出, 航空機への適用の4つの重要な分野において, RNNの現状について検討する。
本稿では, 提案手法の方法論, 目的, 結果, および, 提案手法の利点と欠点について述べる。
これらの様々な手法はすべて、人気のあるLong Short-Term Memory (LSTM) RNNやDeep-Residual RNNといった、異なるRNNアーキテクチャの活用方法に焦点を当てている。
また,特定の状況下でどのフレームワークが最適か,提案モデルの利点と欠点についても検討する。
関連論文リスト
- Impact of Recurrent Neural Networks and Deep Learning Frameworks on Real-time Lightweight Time Series Anomaly Detection [0.0]
様々なディープラーニングフレームワークで利用可能な異なるタイプのRNNが、これらの異常検出手法の性能にどのように影響するかは不明だ。
我々は、いくつかの最先端手法をレビューし、よく知られたRNN変種を用いた代表的異常検出手法を実装した。
次に、実世界のオープンソース時系列データセットにまたがる各実装のパフォーマンスを分析するために、包括的な評価を行う。
論文 参考訳(メタデータ) (2024-07-26T00:38:51Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - Properties and Potential Applications of Random Functional-Linked Types
of Neural Networks [81.56822938033119]
ランダム関数リンクニューラルネットワーク(RFLNN)は、深い構造を学習する別の方法を提供する。
本稿では周波数領域の観点からRFLNNの特性について考察する。
本稿では,より優れた性能でBLSネットワークを生成する手法を提案し,ポゾン方程式を解くための効率的なアルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-04-03T13:25:22Z) - Deep Learning Architecture for Automatic Essay Scoring [0.0]
本稿では、リカレントネットワーク(RNN)と畳み込みニューラルネットワーク(CNN)に基づく新しいアーキテクチャを提案する。
提案アーキテクチャでは, 単語埋め込みベクトルから, 単語n-gramの文脈的特徴を学習し, 捉える。
提案方式は,他の深層学習に基づくAESシステムよりも格付け精度が高い。
論文 参考訳(メタデータ) (2022-06-16T14:56:24Z) - Multi-task recommendation system for scientific papers with high-way
networks [1.5229257192293197]
論文推薦を予測し,キーワードなどのメタデータを生成するマルチタスクレコメンデーションシステム(RS)を提案する。
このアプローチの背景には、キーワードとして表現された論文のトピックが、研究者の好みの予測に有用である、という動機がある。
我々のアプリケーションは、ハイウェイネットワークを使ってシステムを非常に深く訓練し、RNNとCNNの利点を組み合わせて最も重要な要素を見つけ、遅延表現する。
論文 参考訳(メタデータ) (2022-04-21T07:40:47Z) - A SAR speckle filter based on Residual Convolutional Neural Networks [68.8204255655161]
本研究では,Convolutional Neural Networks(CNN)に基づく深層学習(DL)アルゴリズムを用いて,Sentinel-1データからスペックルノイズをフィルタリングする新しい手法を提案する。
得られた結果は、技術の現状と比較すると、ピーク信号対雑音比(PSNR)と構造類似度指数(SSIM)の点で明確な改善を示しています。
論文 参考訳(メタデータ) (2021-04-19T14:43:07Z) - A Compact Deep Learning Model for Face Spoofing Detection [4.250231861415827]
プレゼンテーションアタック検出(PAD)は研究コミュニティから大きな注目を集めている。
我々は、統一されたニューラルネットワークアーキテクチャにおいて、幅広い機能と深い機能の両方を融合することで、この問題に対処する。
この手順は、ROSE-Youtu、SiW、NUAA Imposterなどのさまざまなスプーフィングデータセットで行われます。
論文 参考訳(メタデータ) (2021-01-12T21:20:09Z) - NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural
Network Synthesis [53.106414896248246]
本稿では,分析者がドメイン知識を注入することで,解のサブグラフ空間を効果的に構築し,ネットワーク探索をガイドするフレームワークを提案する。
このテクニックを反復的に適用することで、アナリストは、与えられたアプリケーションに対して最高のパフォーマンスのニューラルネットワークアーキテクチャに収束することができる。
論文 参考訳(メタデータ) (2020-09-28T01:48:45Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Bayesian Neural Networks: An Introduction and Survey [22.018605089162204]
本稿ではベイズニューラルネットワーク(BNN)とその実装に関する基礎研究を紹介する。
異なる近似推論法を比較し、将来の研究が現在の手法でどのように改善されるかを強調するために使用される。
論文 参考訳(メタデータ) (2020-06-22T06:30:15Z) - Towards Accurate Scene Text Recognition with Semantic Reasoning Networks [52.86058031919856]
本稿では,シーンテキスト認識のための意味推論ネットワーク(SRN)という,エンドツーエンドのトレーニング可能な新しいフレームワークを提案する。
GSRMはマルチウェイ並列伝送によってグローバルセマンティックコンテキストをキャプチャするために導入された。
正規テキスト,不規則テキスト,非ラテン語長文を含む7つの公開ベンチマークの結果,提案手法の有効性とロバスト性を検証した。
論文 参考訳(メタデータ) (2020-03-27T09:19:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。