A web-tool for calculating the economic performance of precision
agriculture technology
- URL: http://arxiv.org/abs/2012.05017v1
- Date: Wed, 9 Dec 2020 12:51:15 GMT
- Title: A web-tool for calculating the economic performance of precision
agriculture technology
- Authors: Marco Medici and S{\o}ren Marcus Pedersen and Maurizio Canavari and
Thomas Anken and Panagiotis Stamatelopoulos and Zisis Tsiropoulos and Alex
Zotos and Ghasem Tohidloo
- Abstract summary: The web-tool is designed to provide guidelines for farmers over their decisions to invest in selected PA technologies.
It increases the knowledge level about novel technologies characteristics and the related benefits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: To develop precision agriculture (PA) to its full potential and make
agriculture progress toward sustainability and resilience, appropriate criteria
for the economic assessment are recognised as being one of the most significant
issues requiring urgent and ongoing attention. In this work, we develop a
web-tool supporting the assessment of the net economic benefits of integrating
precision farming technologies in different contexts. The methodological
approach of the tool is accessible to any agricultural stakeholder through a
guided process that allows to evaluate and compare precision agriculture
technologies with conventional systems, leading the final user to assess the
financial viability and environmental impact resulting from the potential
implementation of various precision agriculture technologies in his farm. The
web-tool is designed to provide guidelines for farmers over their decisions to
invest in selected PA technologies, by increasing the knowledge level about
novel technologies characteristics and the related benefits. Possible input
reduction also offers the possibility to investigate the mitigation of
environmental impacts.
Related papers
- Application of Machine Learning in Agriculture: Recent Trends and Future Research Avenues [6.0460261046732455]
Food production is a vital global concern and the potential for an agritech revolution through artificial intelligence (AI) remains largely unexplored.
This paper presents a comprehensive review focused on the application of machine learning (ML) in agriculture, aiming to explore its transformative potential in farming practices and efficiency enhancement.
arXiv Detail & Related papers (2024-05-23T17:53:31Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Harnessing Artificial Intelligence for Sustainable Agricultural
Development in Africa: Opportunities, Challenges, and Impact [0.0]
The study navigates through the dynamic landscape of AI applications in agriculture.
Opportunities such as precision farming, crop monitoring, and climate-resilient practices are examined.
Ethical considerations and policy implications are also discussed.
arXiv Detail & Related papers (2024-01-03T23:02:13Z) - Artificial Intelligence in Sustainable Vertical Farming [0.0]
The paper provides a comprehensive exploration of the role of AI in sustainable vertical farming.
The review synthesizes the current state of AI applications, encompassing machine learning, computer vision, the Internet of Things (IoT), and robotics.
The implications extend beyond efficiency gains, considering economic viability, reduced environmental impact, and increased food security.
arXiv Detail & Related papers (2023-11-17T22:15:41Z) - Predictable Artificial Intelligence [77.1127726638209]
This paper introduces the ideas and challenges of Predictable AI.
It explores the ways in which we can anticipate key validity indicators of present and future AI ecosystems.
We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems.
arXiv Detail & Related papers (2023-10-09T21:36:21Z) - Recent applications of machine learning, remote sensing, and iot
approaches in yield prediction: a critical review [0.0]
The integration of remote sensing and machine learning in agriculture is transforming the industry.
This paper reviews relevant articles that have used RS, ML, cloud computing, and IoT in crop yield prediction.
arXiv Detail & Related papers (2023-06-07T16:13:16Z) - Towards a methodology to consider the environmental impacts of digital agriculture [0.0]
Agriculture affects global warming, while its yields are threatened by it. Information and communication technology (ICT) is often considered as a potential lever to mitigate this tension.
This research aims at defining a methodology taking into account the environmental footprint of agricultural ICT systems and their required infrastructures.
arXiv Detail & Related papers (2023-05-16T07:58:34Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
We review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry.
We present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery.
We highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI.
arXiv Detail & Related papers (2023-05-03T05:16:54Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
Special issue presents the latest development in statistical inference, machine learning and optimum control for precision farming.
Satellite positioning and navigation followed by Internet-of-Things generate vast information that can be used to optimize farming processes in real-time.
arXiv Detail & Related papers (2020-07-07T12:44:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.