Evaluating Digital Agriculture Recommendations with Causal Inference
- URL: http://arxiv.org/abs/2211.16938v1
- Date: Wed, 30 Nov 2022 12:20:08 GMT
- Title: Evaluating Digital Agriculture Recommendations with Causal Inference
- Authors: Ilias Tsoumas, Georgios Giannarakis, Vasileios Sitokonstantinou,
Alkiviadis Koukos, Dimitra Loka, Nikolaos Bartsotas, Charalampos Kontoes,
Ioannis Athanasiadis
- Abstract summary: We propose an observational causal inference framework for the empirical evaluation of the impact of digital tools on target farm performance indicators.
As a case study, we designed and implemented a recommendation system for the optimal sowing time of cotton based on numerical weather predictions.
Using the back-door criterion, we identify the impact of sowing recommendations on the yield and subsequently estimate it using linear regression, matching, inverse propensity score weighting and meta-learners.
- Score: 0.9213852038999553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In contrast to the rapid digitalization of several industries, agriculture
suffers from low adoption of smart farming tools. While AI-driven digital
agriculture tools can offer high-performing predictive functionalities, they
lack tangible quantitative evidence on their benefits to the farmers. Field
experiments can derive such evidence, but are often costly, time consuming and
hence limited in scope and scale of application. To this end, we propose an
observational causal inference framework for the empirical evaluation of the
impact of digital tools on target farm performance indicators (e.g., yield in
this case). This way, we can increase farmers' trust via enhancing the
transparency of the digital agriculture market and accelerate the adoption of
technologies that aim to secure farmer income resilience and global
agricultural sustainability. As a case study, we designed and implemented a
recommendation system for the optimal sowing time of cotton based on numerical
weather predictions, which was used by a farmers' cooperative during the
growing season of 2021. We then leverage agricultural knowledge, collected
yield data, and environmental information to develop a causal graph of the farm
system. Using the back-door criterion, we identify the impact of sowing
recommendations on the yield and subsequently estimate it using linear
regression, matching, inverse propensity score weighting and meta-learners. The
results reveal that a field sown according to our recommendations exhibited a
statistically significant yield increase that ranged from 12% to 17%, depending
on the method. The effect estimates were robust, as indicated by the agreement
among the estimation methods and four successful refutation tests. We argue
that this approach can be implemented for decision support systems of other
fields, extending their evaluation beyond a performance assessment of internal
functionalities.
Related papers
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
We present a framework to better identify food security hotspots using a combination of remote sensing, deep learning, crop yield modeling, and causal modeling of the food distribution system.
We focus our analysis on the wheat breadbasket of northern India, which supplies a large percentage of the world's population.
arXiv Detail & Related papers (2024-11-07T22:29:05Z) - Naïve Bayes and Random Forest for Crop Yield Prediction [0.0]
This study analyzes crop yield prediction in India from 1997 to 2020, focusing on various crops and key environmental factors.
It aims to predict agricultural yields by utilizing advanced machine learning techniques like Linear Regression, Decision Tree, KNN, Na"ive Bayes, K-Mean Clustering, and Random Forest.
arXiv Detail & Related papers (2024-04-23T16:55:45Z) - A Machine Learning Approach for Crop Yield and Disease Prediction Integrating Soil Nutrition and Weather Factors [0.0]
The development of an intelligent agricultural decision-supporting system for crop selection and disease forecasting in Bangladesh is the main objective of this work.
The recommended approach uses a variety of datasets on the production of crops, soil conditions, agro-meteorological regions, crop disease, and meteorological factors.
arXiv Detail & Related papers (2024-03-28T09:57:50Z) - Recent applications of machine learning, remote sensing, and iot
approaches in yield prediction: a critical review [0.0]
The integration of remote sensing and machine learning in agriculture is transforming the industry.
This paper reviews relevant articles that have used RS, ML, cloud computing, and IoT in crop yield prediction.
arXiv Detail & Related papers (2023-06-07T16:13:16Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
We review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry.
We present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery.
We highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI.
arXiv Detail & Related papers (2023-05-03T05:16:54Z) - Evaluating Digital Tools for Sustainable Agriculture using Causal
Inference [0.9213852038999553]
We propose an observational causal inference framework for the empirical evaluation of the impact of digital tools on target farm performance indicators.
This way, we can increase farmers' trust by enhancing the transparency of the digital agriculture market.
arXiv Detail & Related papers (2022-11-06T18:22:17Z) - Towards assessing agricultural land suitability with causal machine
learning [0.0]
We use causal machine learning to estimate the effect of crop rotation and landscape crop diversity on Net Primary Productivity in the Flanders region of Belgium.
We find that the effect of crop rotation was insignificant, while landscape crop diversity had a small negative effect on NPP.
arXiv Detail & Related papers (2022-04-27T14:13:47Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
Special issue presents the latest development in statistical inference, machine learning and optimum control for precision farming.
Satellite positioning and navigation followed by Internet-of-Things generate vast information that can be used to optimize farming processes in real-time.
arXiv Detail & Related papers (2020-07-07T12:44:17Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.