Improved spectral gaps for random quantum circuits: large local
dimensions and all-to-all interactions
- URL: http://arxiv.org/abs/2012.05259v1
- Date: Wed, 9 Dec 2020 19:00:50 GMT
- Title: Improved spectral gaps for random quantum circuits: large local
dimensions and all-to-all interactions
- Authors: Jonas Haferkamp, Nicholas Hunter-Jones
- Abstract summary: We show that $1D$ random quantum circuits have a spectral gap scaling as $Omega(n-1)$, provided that $t$ is small compared to the local dimension: $t2leq O(q)$.
Our second result is an unconditional spectral gap bounded below by $Omega(n-1log-1(n) t-alpha(q))$ for random quantum circuits with all-to-all interactions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Random quantum circuits are a central concept in quantum information theory
with applications ranging from demonstrations of quantum computational
advantage to descriptions of scrambling in strongly-interacting systems and
black holes. The utility of random quantum circuits in these settings stems
from their ability to rapidly generate quantum pseudo-randomness. In a seminal
paper by Brand\~ao, Harrow, and Horodecki, it was proven that the $t$-th moment
operator of local random quantum circuits on $n$ qudits with local dimension
$q$ has a spectral gap of at least $\Omega(n^{-1}t^{-5-3.1/\log(q)})$, which
implies that they are efficient constructions of approximate unitary designs.
As a first result, we use Knabe bounds for the spectral gaps of
frustration-free Hamiltonians to show that $1D$ random quantum circuits have a
spectral gap scaling as $\Omega(n^{-1})$, provided that $t$ is small compared
to the local dimension: $t^2\leq O(q)$. This implies a (nearly) linear scaling
of the circuit depth in the design order $t$. Our second result is an
unconditional spectral gap bounded below by $\Omega(n^{-1}\log^{-1}(n)
t^{-\alpha(q)})$ for random quantum circuits with all-to-all interactions. This
improves both the $n$ and $t$ scaling in design depth for the non-local model.
We show this by proving a recursion relation for the spectral gaps involving an
auxiliary random walk. Lastly, we solve the smallest non-trivial case exactly
and combine with numerics and Knabe bounds to improve the constants involved in
the spectral gap for small values of $t$.
Related papers
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.
This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.
Even with sublinear barriers, we use Feynman-Kac techniques to lift classical to quantum ones establishing tight lower bound $T_mathrmmix = 2Omega(nalpha)$.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - Incompressibility and spectral gaps of random circuits [2.359282907257055]
reversible and quantum circuits form random walks on the alternating group $mathrmAlt (2n)$ and unitary group $mathrmSU (2n)$, respectively.
We prove that the gap for random reversible circuits is $Omega(n-3)$ for all $tgeq 1$, and the gap for random quantum circuits is $Omega(n-3)$ for $t leq Theta(2n/2)$.
arXiv Detail & Related papers (2024-06-11T17:23:16Z) - The Cost of Entanglement Renormalization on a Fault-Tolerant Quantum Computer [0.042855555838080824]
We perform a detailed estimate for the prospect of using deep entanglement renormalization ansatz on a fault-tolerant quantum computer.
For probing a relatively large system size, we observe up to an order of magnitude reduction in the number of qubits.
For estimating the energy per site of $epsilon$, $mathcalOleft(fraclog Nepsilon right)$ $T$ gates and $mathcalOleft(log Nright)$ qubits suffice.
arXiv Detail & Related papers (2024-04-15T18:00:17Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Unitary k-designs from random number-conserving quantum circuits [0.0]
Local random circuits scramble efficiently and accordingly have a range of applications in quantum information and quantum dynamics.
We show that finite moments cannot distinguish the ensemble that local random circuits generate from the Haar ensemble on the entire group of number-conserving unitaries.
arXiv Detail & Related papers (2023-06-01T18:00:00Z) - On the average-case complexity of learning output distributions of
quantum circuits [55.37943886895049]
We show that learning the output distributions of brickwork random quantum circuits is average-case hard in the statistical query model.
This learning model is widely used as an abstract computational model for most generic learning algorithms.
arXiv Detail & Related papers (2023-05-09T20:53:27Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Random quantum circuits are approximate unitary $t$-designs in depth
$O\left(nt^{5+o(1)}\right)$ [0.0]
We show that random quantum circuits generate approximate unitary $t$-designs in depth $O(nt5+o(1))$.
Our techniques involve Gao's quantum union bound and the unreasonable effectiveness of the Clifford group.
arXiv Detail & Related papers (2022-03-30T18:02:08Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
We study the distribution over measurement outcomes of noisy random quantum circuits in the low-fidelity regime.
For local noise that is sufficiently weak and unital, correlations (measured by the linear cross-entropy benchmark) between the output distribution $p_textnoisy$ of a generic noisy circuit instance shrink exponentially.
If the noise is incoherent, the output distribution approaches the uniform distribution $p_textunif$ at precisely the same rate.
arXiv Detail & Related papers (2021-11-29T19:26:28Z) - Quantum supremacy and hardness of estimating output probabilities of
quantum circuits [0.0]
We prove under the theoretical complexity of the non-concentration hierarchy that approximating the output probabilities to within $2-Omega(nlogn)$ is hard.
We show that the hardness results extend to any open neighborhood of an arbitrary (fixed) circuit including trivial circuit with identity gates.
arXiv Detail & Related papers (2021-02-03T09:20:32Z) - Random quantum circuits anti-concentrate in log depth [118.18170052022323]
We study the number of gates needed for the distribution over measurement outcomes for typical circuit instances to be anti-concentrated.
Our definition of anti-concentration is that the expected collision probability is only a constant factor larger than if the distribution were uniform.
In both the case where the gates are nearest-neighbor on a 1D ring and the case where gates are long-range, we show $O(n log(n)) gates are also sufficient.
arXiv Detail & Related papers (2020-11-24T18:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.