Quantum phase discrimination with applications to quantum search on graphs
- URL: http://arxiv.org/abs/2504.15194v1
- Date: Mon, 21 Apr 2025 16:06:43 GMT
- Title: Quantum phase discrimination with applications to quantum search on graphs
- Authors: Guanzhong Li, Lvzhou Li, Jingquan Luo,
- Abstract summary: We propose a quantum algorithm named it quantum phase discrimination(QPD) for this task.<n>By using QPD, we reduce the query complexity of a path-finding algorithm proposed by Li and Zur.<n>We present two applications to quantum search on graphs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the phase discrimination problem, in which we want to decide whether the eigenphase $\theta\in(-\pi,\pi]$ of a given eigenstate $|\psi\rangle$ with eigenvalue $e^{i\theta}$ is zero or not, using applications of the unitary $U$ provided as a black box oracle.We propose a quantum algorithm named {\it quantum phase discrimination(QPD)} for this task, with optimal query complexity $\Theta(\frac{1}{\lambda}\log\frac{1}{\delta})$ to the oracle $U$, where $\lambda$ is the gap between zero and non-zero eigenphases and $\delta$ the allowed one-sided error. The quantum circuit is simple, consisting of only one ancillary qubit and a sequence of controlled-$U$ interleaved with single qubit $Y$ rotations, whose angles are given by a simple analytical formula. Quantum phase discrimination could become a fundamental subroutine in other quantum algorithms, as we present two applications to quantum search on graphs: i) Spatial search on graphs. Inspired by the structure of QPD, we propose a new quantum walk model, and based on them we tackle the spatial search problem, obtaining a novel quantum search algorithm. For any graph with any number of marked vertices, the quantum algorithm that can find a marked vertex with probability $\Omega(1)$ in total evolution time $ O(\frac{1}{\lambda \sqrt{\varepsilon}})$ and query complexity $ O(\frac{1}{\sqrt{\varepsilon}})$, where $\lambda$ is the gap between the zero and non-zero eigenvalues of the graph Laplacian and $\varepsilon$ is a lower bound on the proportion of marked vertices. ii) Path-finding on graphs.} By using QPD, we reduce the query complexity of a path-finding algorithm proposed by Li and Zur [arxiv: 2311.07372] from $\tilde{O}(n^{11})$ to $\tilde{O}(n^8)$, in a welded-tree circuit graph with $\Theta(n2^n)$ vertices. Besides these two applications, we argue that more quantum algorithms might benefit from QPD.
Related papers
- Quantum Algorithms for Non-smooth Non-convex Optimization [30.576546266390714]
This paper considers the problem for finding the $(,epsilon)$-Goldstein stationary point of Lipschitz continuous objective.
We construct a zeroth-order quantum estimator for the surrogate oracle function.
arXiv Detail & Related papers (2024-10-21T16:52:26Z) - Implementation of Continuous-Time Quantum Walk on Sparse Graph [0.0]
Continuous-time quantum walks (CTQWs) play a crucial role in quantum computing.
How to efficiently implement CTQWs is a challenging issue.
In this paper, we study implementation of CTQWs on sparse graphs.
arXiv Detail & Related papers (2024-08-20T05:20:55Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Quantum algorithms for Hopcroft's problem [45.45456673484445]
We study quantum algorithms for Hopcroft's problem which is a fundamental problem in computational geometry.
The classical complexity of this problem is well-studied, with the best known algorithm running in $O(n4/3)$ time.
Our results are two different quantum algorithms with time complexity $widetilde O(n5/6)$.
arXiv Detail & Related papers (2024-05-02T10:29:06Z) - Hamiltonian simulation for low-energy states with optimal time dependence [45.02537589779136]
We consider the task of simulating time evolution under a Hamiltonian $H$ within its low-energy subspace.
We present a quantum algorithm that uses $O(tsqrtlambdaGamma + sqrtlambda/Gammalog (1/epsilon))$ queries to the block-encoding for any $Gamma$.
arXiv Detail & Related papers (2024-04-04T17:58:01Z) - Moments, Random Walks, and Limits for Spectrum Approximation [40.43008834125277]
We show that there are distributions on $[-1,1]$ that cannot be approximated to accuracy $epsilon$ in Wasserstein-1 distance.
No algorithm can compute an $epsilon$-accurate approximation to the spectrum of a normalized graph adjacency matrix with constant probability.
arXiv Detail & Related papers (2023-07-02T05:03:38Z) - Succinct quantum testers for closeness and $k$-wise uniformity of probability distributions [2.3466828785520373]
We explore potential quantum speedups for the fundamental problem of testing the properties of closeness and $k$-wise uniformity of probability distributions.
We show that the quantum query complexities for $ell1$- and $ell2$-closeness testing are $O(sqrtn/varepsilon)$ and $O(sqrtnk/varepsilon)$.
We propose the first quantum algorithm for this problem with query complexity $O(sqrtnk/varepsilon)
arXiv Detail & Related papers (2023-04-25T15:32:37Z) - On the exact quantum query complexity of $\text{MOD}_m^n$ and $\text{EXACT}_{k,l}^n$ [4.956977275061968]
We present an exact quantum algorithm for computing $textMOD_mn$.
We show exact quantum query complexity of a broad class of symmetric functions that map $0,1n$ to a finite set $X$ is less than $n$.
arXiv Detail & Related papers (2023-03-20T08:17:32Z) - On quantum algorithms for the Schr\"odinger equation in the
semi-classical regime [27.175719898694073]
We consider Schr"odinger's equation in the semi-classical regime.
Such a Schr"odinger equation finds many applications, including in Born-Oppenheimer molecular dynamics and Ehrenfest dynamics.
arXiv Detail & Related papers (2021-12-25T20:01:54Z) - Quantum supremacy and hardness of estimating output probabilities of
quantum circuits [0.0]
We prove under the theoretical complexity of the non-concentration hierarchy that approximating the output probabilities to within $2-Omega(nlogn)$ is hard.
We show that the hardness results extend to any open neighborhood of an arbitrary (fixed) circuit including trivial circuit with identity gates.
arXiv Detail & Related papers (2021-02-03T09:20:32Z) - Improved spectral gaps for random quantum circuits: large local
dimensions and all-to-all interactions [0.0]
We show that $1D$ random quantum circuits have a spectral gap scaling as $Omega(n-1)$, provided that $t$ is small compared to the local dimension: $t2leq O(q)$.
Our second result is an unconditional spectral gap bounded below by $Omega(n-1log-1(n) t-alpha(q))$ for random quantum circuits with all-to-all interactions.
arXiv Detail & Related papers (2020-12-09T19:00:50Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.