論文の概要: Machine Learning in Magnetic Resonance Imaging: Image Reconstruction
- arxiv url: http://arxiv.org/abs/2012.05303v1
- Date: Wed, 9 Dec 2020 20:38:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-16 01:50:24.229173
- Title: Machine Learning in Magnetic Resonance Imaging: Image Reconstruction
- Title(参考訳): 磁気共鳴イメージングにおける機械学習:画像再構成
- Authors: Javier Montalt-Tordera, Vivek Muthurangu, Andreas Hauptmann, Jennifer
Anne Steeden
- Abstract要約: MRI画像再構成の分野では,機械学習の利用が爆発的に増加している。
我々は,MRI再建における現在の機械学習アプローチを要約し,その欠点,臨床応用,現状について考察する。
- 参考スコア(独自算出の注目度): 1.6822770693792823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic Resonance Imaging (MRI) plays a vital role in diagnosis, management
and monitoring of many diseases. However, it is an inherently slow imaging
technique. Over the last 20 years, parallel imaging, temporal encoding and
compressed sensing have enabled substantial speed-ups in the acquisition of MRI
data, by accurately recovering missing lines of k-space data. However, clinical
uptake of vastly accelerated acquisitions has been limited, in particular in
compressed sensing, due to the time-consuming nature of the reconstructions and
unnatural looking images. Following the success of machine learning in a wide
range of imaging tasks, there has been a recent explosion in the use of machine
learning in the field of MRI image reconstruction. A wide range of approaches
have been proposed, which can be applied in k-space and/or image-space.
Promising results have been demonstrated from a range of methods, enabling
natural looking images and rapid computation. In this review article we
summarize the current machine learning approaches used in MRI reconstruction,
discuss their drawbacks, clinical applications, and current trends.
- Abstract(参考訳): 磁気共鳴イメージング(MRI)は多くの疾患の診断、管理、モニタリングにおいて重要な役割を担っている。
しかし、これは本質的に遅い画像技術である。
過去20年間で、並列イメージング、テンポラリエンコーディング、圧縮センシングは、k空間データの欠落行を正確に回復することにより、MRIデータの取得においてかなりのスピードアップを可能にした。
しかし, 再建に要する時間的特性や不自然な画像から, 特に圧縮センシングにおいて, 急速に加速する買収の臨床的取り込みは限られている。
幅広い画像処理タスクにおける機械学習の成功に続いて、MRI画像再構成分野における機械学習の利用が爆発的に増えている。
k空間および/または画像空間に適用可能な幅広いアプローチが提案されている。
自然に見える画像と高速な計算を可能にする様々な手法により、結果が実証されている。
本稿では,MRI再建における現在の機械学習アプローチについて概説し,その欠点,臨床応用,現状について考察する。
関連論文リスト
- Continuous K-space Recovery Network with Image Guidance for Fast MRI Reconstruction [5.910509015352437]
高速MRIは、アンダーサンプリングされたk空間から高品質な画像を復元することを目的としている。
既存の方法では、アンサンプされたデータをアーティファクトのないMRI画像にマッピングするために、ディープラーニングモデルを訓練する。
画像領域誘導を用いた暗黙的ニューラル表現の新しい視点から、連続的なk空間回復ネットワークを提案する。
論文 参考訳(メタデータ) (2024-11-18T04:54:04Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
ディープラーニングベースのCMRイメージングアルゴリズムへの関心が高まっている。
ディープラーニング手法は大規模なトレーニングデータセットを必要とする。
このデータセットには300人の被験者のマルチコントラスト、マルチビュー、マルチスライス、マルチコイルCMRイメージングデータが含まれている。
論文 参考訳(メタデータ) (2023-09-19T15:14:42Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Multi PILOT: Learned Feasible Multiple Acquisition Trajectories for
Dynamic MRI [0.7843343739054056]
本研究では,ダイナミックイメージング環境における獲得学習について考察する。
複数のフレーム単位の取得軌跡の協調最適化のためのエンドツーエンドパイプラインを設計する。
より短い取得時間で画像再構成精度を向上した。
論文 参考訳(メタデータ) (2023-03-13T14:23:39Z) - ERNAS: An Evolutionary Neural Architecture Search for Magnetic Resonance
Image Reconstructions [0.688204255655161]
加速MRIの一般的なアプローチは、k空間データをアンサンプすることである。
アンサンプはスキャン手順を高速化する一方で、画像内のアーティファクトを生成し、アーティファクトのない画像を生成するために高度な再構築アルゴリズムが必要である。
本研究では、新しい進化的ニューラルネットワーク探索アルゴリズムを用いて、最適化されたニューラルネットワークを用いて、アンダーサンプルデータからのMRI再構成を行った。
論文 参考訳(メタデータ) (2022-06-15T03:42:18Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - Generative Adversarial Networks (GAN) Powered Fast Magnetic Resonance
Imaging -- Mini Review, Comparison and Perspectives [5.3148259096171175]
MRIの欠点の1つは、他の画像モダリティに比べて比較的遅いスキャンと再構成である。
ディープニューラルネットワーク(DNN)は、比較的高品質な画像を再現するスパースMRI再構成モデルに使われてきた。
画像の知覚品質を向上した高速MRIを実現するために,GAN(Generative Adversarial Networks)に基づく手法を提案する。
論文 参考訳(メタデータ) (2021-05-04T23:59:00Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
SISR(Single Image Super-Resolution)は、1つの低解像度入力画像から高解像度(HR)の詳細を得る技術である。
ディープラーニングは、大きなデータセットから事前知識を抽出し、低解像度の画像から優れたMRI画像を生成します。
論文 参考訳(メタデータ) (2021-02-25T14:52:23Z) - Deep Residual Dense U-Net for Resolution Enhancement in Accelerated MRI
Acquisition [19.422926534305837]
本稿では,MRIの高速化による高画質画像の再構成を目的としたディープラーニング手法を提案する。
具体的には、畳み込みニューラルネットワーク(CNN)を用いて、エイリアス画像と元の画像の違いを学習する。
ダウンサンプリングされたk空間データの特異性を考慮すると、与えられたk空間データを効果的に活用する学習における損失関数に新しい用語を導入する。
論文 参考訳(メタデータ) (2020-01-13T19:01:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。