論文の概要: Learning Optimization-inspired Image Propagation with Control Mechanisms
and Architecture Augmentations for Low-level Vision
- arxiv url: http://arxiv.org/abs/2012.05435v1
- Date: Thu, 10 Dec 2020 03:24:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-15 06:13:14.688766
- Title: Learning Optimization-inspired Image Propagation with Control Mechanisms
and Architecture Augmentations for Low-level Vision
- Title(参考訳): 低レベル視覚のための制御機構とアーキテクチャ拡張を用いた学習最適化による画像伝搬
- Authors: Risheng Liu, Zhu Liu, Pan Mu, Zhouchen Lin, Xin Fan, Zhongxuan Luo
- Abstract要約: 本稿では,最適化にインスパイアされた深層画像伝播フレームワークを提案する。
様々な低レベルのビジョンタスクに対して、gdc(generative, discriminative and corrective)原則を集約する。
異なる低レベルビジョンアプリケーションの実験は、GDCの有効性と柔軟性を示しています。
- 参考スコア(独自算出の注目度): 104.86916427849869
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, building deep learning models from optimization perspectives
has becoming a promising direction for solving low-level vision problems. The
main idea of most existing approaches is to straightforwardly combine numerical
iterations with manually designed network architectures to generate image
propagations for specific kinds of optimization models. However, these
heuristic learning models often lack mechanisms to control the propagation and
rely on architecture engineering heavily. To mitigate the above issues, this
paper proposes a unified optimization-inspired deep image propagation framework
to aggregate Generative, Discriminative and Corrective (GDC for short)
principles for a variety of low-level vision tasks. Specifically, we first
formulate low-level vision tasks using a generic optimization objective and
construct our fundamental propagative modules from three different viewpoints,
i.e., the solution could be obtained/learned 1) in generative manner; 2) based
on discriminative metric, and 3) with domain knowledge correction. By designing
control mechanisms to guide image propagations, we then obtain convergence
guarantees of GDC for both fully- and partially-defined optimization
formulations. Furthermore, we introduce two architecture augmentation
strategies (i.e., normalization and automatic search) to respectively enhance
the propagation stability and task/data-adaption ability. Extensive experiments
on different low-level vision applications demonstrate the effectiveness and
flexibility of GDC.
- Abstract(参考訳): 近年、最適化の観点からディープラーニングモデルを構築することは、低レベルの視覚問題を解決する上で有望な方向となっている。
既存のアプローチの主な考え方は、数値的な反復と手動で設計されたネットワークアーキテクチャを組み合わせることで、特定の種類の最適化モデルのための画像伝搬を生成することである。
しかしながら、これらのヒューリスティック学習モデルは、伝播を制御するメカニズムを欠き、アーキテクチャ工学に大きく依存することが多い。
上記の問題を緩和するために,多種多様な低レベル視覚タスクに対する生成,識別,補正(GDC)の原則を集約する,統一的な最適化にインスパイアされた深部画像伝搬フレームワークを提案する。
具体的には,まず汎用的最適化目標を用いて低レベル視覚タスクを定式化し,3つの異なる視点から基本伝播モジュールを構築する。
画像伝搬を誘導する制御機構を設計することにより、完全かつ部分的に定義された最適化定式化のGDCの収束保証を得る。
さらに,2つのアーキテクチャ拡張戦略(正規化と自動探索)を導入し,それぞれ伝播安定性とタスク/データ適応能力を高める。
異なる低レベルビジョンアプリケーションに関する広範囲な実験は、gdcの有効性と柔軟性を示している。
関連論文リスト
- Edge-Efficient Deep Learning Models for Automatic Modulation Classification: A Performance Analysis [0.7428236410246183]
無線信号の自動変調分類(AMC)のための最適化畳み込みニューラルネットワーク(CNN)について検討した。
本稿では,これらの手法を組み合わせて最適化モデルを提案する。
実験結果から,提案手法と組み合わせ最適化手法は,複雑度が著しく低いモデルの開発に極めて有効であることが示唆された。
論文 参考訳(メタデータ) (2024-04-11T06:08:23Z) - Evolutionary Alternating Direction Method of Multipliers for Constrained
Multi-Objective Optimization with Unknown Constraints [17.392113376816788]
制約付き多目的最適化問題(CMOP)は、科学、工学、設計における現実世界の応用に及んでいる。
本稿では,目的関数と制約関数を分離する乗算器の交互方向法の原理に着想を得た,この種の進化的最適化フレームワークについて紹介する。
本研究の枠組みは,元の問題を2つのサブプロブレムの付加形式に再構成することで,未知の制約でCMOPに対処する。
論文 参考訳(メタデータ) (2024-01-02T00:38:20Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - Accelerated Federated Learning with Decoupled Adaptive Optimization [53.230515878096426]
フェデレートドラーニング(FL)フレームワークは、クライアント上のトレーニングデータのプライバシを維持しながら、共有モデルを協調的に学習することを可能にする。
近年,SGDM,Adam,AdaGradなどの集中型適応最適化手法をフェデレートした設定に一般化するためのイテレーションが多数実施されている。
本研究は、常微分方程式(ODE)のダイナミクスの観点から、FLの新しい適応最適化手法を開発することを目的としている。
論文 参考訳(メタデータ) (2022-07-14T22:46:43Z) - Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application [49.66088514485446]
ベストレスポンス制約(Best-Response Constraint、BRC)は、ジェネレータのディスクリミネータへの依存性を明示的に定式化する一般的な学習フレームワークである。
モチベーションや定式化の相違があっても, フレキシブルBRC法により, 様々なGANが一様に改善できることが示される。
論文 参考訳(メタデータ) (2022-05-20T12:42:41Z) - Balanced Multimodal Learning via On-the-fly Gradient Modulation [10.5602074277814]
マルチモーダル学習は、異なる感覚を統合することで、世界を包括的に理解するのに役立つ。
学習目標に対する貢献の相違をモニタリングすることで,各モードの最適化を適応的に制御するオンザフライ勾配変調を提案する。
論文 参考訳(メタデータ) (2022-03-29T08:26:38Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
本稿では,新しい画像特異的畳み込み変調カーネル(IKM)を提案する。
我々は、画像や特徴のグローバルな文脈情報を利用して、畳み込みカーネルを適応的に調整するための注意重みを生成する。
単一画像超解像実験により,提案手法は最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-11-16T11:05:10Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
メタモデルのニューラルタンジェントカーネル(NTK)によって誘導される再生カーネルヒルベルト空間(RKHS)における最初のメタラーニングパラダイムを提案する。
このパラダイムでは,MAMLフレームワークのように,最適な反復内ループ適応を必要としない2つのメタ学習アルゴリズムを導入する。
本研究の目的は,1) 適応をRKHSの高速適応正則化器に置き換えること,2) NTK理論に基づいて解析的に適応を解くことである。
論文 参考訳(メタデータ) (2021-02-07T20:53:23Z) - Enhanced Innovized Repair Operator for Evolutionary Multi- and
Many-objective Optimization [5.885238773559015]
革新」とは、最適化問題においてパレート最適化(PO)ソリューションの一部または全部の共通関係を学習するタスクである。
近年の研究では、非支配的なソリューションの時系列配列もまた、問題の特徴を学習するのに使える有能なパターンを持っていることが示されている。
本稿では,Pareto-Optimal 集合に向けて,集団構成員を前進させるために必要な設計変数の修正を学習する機械学習(ML-)支援モデル手法を提案する。
論文 参考訳(メタデータ) (2020-11-21T10:29:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。