論文の概要: Enhanced Innovized Repair Operator for Evolutionary Multi- and
Many-objective Optimization
- arxiv url: http://arxiv.org/abs/2011.10760v1
- Date: Sat, 21 Nov 2020 10:29:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-22 22:57:06.545838
- Title: Enhanced Innovized Repair Operator for Evolutionary Multi- and
Many-objective Optimization
- Title(参考訳): 進化的多目的および多目的最適化のための改良補修演算子
- Authors: Sukrit Mittal and Dhish Kumar Saxena and Kalyanmoy Deb and Erik
Goodman
- Abstract要約: 革新」とは、最適化問題においてパレート最適化(PO)ソリューションの一部または全部の共通関係を学習するタスクである。
近年の研究では、非支配的なソリューションの時系列配列もまた、問題の特徴を学習するのに使える有能なパターンを持っていることが示されている。
本稿では,Pareto-Optimal 集合に向けて,集団構成員を前進させるために必要な設計変数の修正を学習する機械学習(ML-)支援モデル手法を提案する。
- 参考スコア(独自算出の注目度): 5.885238773559015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: "Innovization" is a task of learning common relationships among some or all
of the Pareto-optimal (PO) solutions in multi- and many-objective optimization
problems. Recent studies have shown that a chronological sequence of
non-dominated solutions obtained in consecutive iterations during an
optimization run also possess salient patterns that can be used to learn
problem features to help create new and improved solutions. In this paper, we
propose a machine-learning- (ML-) assisted modelling approach that learns the
modifications in design variables needed to advance population members towards
the Pareto-optimal set. We then propose to use the resulting ML model as an
additional innovized repair (IR2) operator to be applied on offspring solutions
created by the usual genetic operators, as a novel mean of improving their
convergence properties. In this paper, the well-known random forest (RF) method
is used as the ML model and is integrated with various evolutionary multi- and
many-objective optimization algorithms, including NSGA-II, NSGA-III, and
MOEA/D. On several test problems ranging from two to five objectives, we
demonstrate improvement in convergence behaviour using the proposed IR2-RF
operator. Since the operator does not demand any additional solution
evaluations, instead using the history of gradual and progressive improvements
in solutions over generations, the proposed ML-based optimization opens up a
new direction of optimization algorithm development with advances in AI and ML
approaches.
- Abstract(参考訳): 革新」は、多目的および多目的最適化問題において、パレート最適化(po)ソリューションの一部またはすべてに共通する関係を学習するタスクである。
近年の研究では、最適化実行中に連続反復で得られる非支配的なソリューションの時系列列もまた、問題の特徴を学習し、新しい、改善されたソリューションを作成するのに役立つ、健全なパターンを持っていることが示されている。
本稿では,パレート最適集合への集団構成員の進入に必要な設計変数の変更を学習する機械学習(ml-)支援モデル手法を提案する。
次に, 得られたmlモデルを改良補修(ir2)演算子として, 通常の遺伝的演算子が生成する子孫溶液に適用し, 収束特性を向上させる新しい方法として用いることを提案する。
本稿では、よく知られたランダムフォレスト(RF)法をMLモデルとして使用し、NSGA-II、NSGA-III、MOEA/Dを含む様々な進化的多目的最適化アルゴリズムと統合する。
提案したIR2-RF演算子を用いて, 2 目的から 5 目的までのいくつかのテスト問題に対して収束挙動の改善を示す。
オペレータは追加のソリューション評価を要求せず、代々のソリューションの漸進的および漸進的な改善の歴史を使用するため、提案されたMLベースの最適化は、AIとMLアプローチの進歩による最適化アルゴリズム開発の新しい方向性を開く。
関連論文リスト
- Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis [5.6787965501364335]
ブラックボックス最適化問題は、多くの現実世界のアプリケーションで一般的な問題である。
これらの問題はインプット・アウトプット・インタラクションを通じて内部動作へのアクセスなしに最適化する必要がある。
このような問題に対処するために2つの広く使われている勾配のない最適化手法が用いられている。
本稿では,2つの手法間のモデル不確実性の類似点と相違点を明らかにすることを目的とする。
論文 参考訳(メタデータ) (2024-03-21T13:59:19Z) - Evolutionary Alternating Direction Method of Multipliers for Constrained
Multi-Objective Optimization with Unknown Constraints [17.392113376816788]
制約付き多目的最適化問題(CMOP)は、科学、工学、設計における現実世界の応用に及んでいる。
本稿では,目的関数と制約関数を分離する乗算器の交互方向法の原理に着想を得た,この種の進化的最適化フレームワークについて紹介する。
本研究の枠組みは,元の問題を2つのサブプロブレムの付加形式に再構成することで,未知の制約でCMOPに対処する。
論文 参考訳(メタデータ) (2024-01-02T00:38:20Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
我々は,従来の最適化タスクから解を転送するアルゴリズムの能力を研究することのできる,システムの柔軟性のためのフレームワークを提案する。
NSGA-IIの柔軟性を2つの変種で検討し,1)2つのタスクの解を同時に最適化し,より適応性が高いと期待されるソース間の解を得る,2)活性化あるいは非活性化の異なる可能性に対応する能動的非アクティブなジェノタイプについて検討した。
その結果,標準NSGA-IIによる適応は目標目標への最適化に必要な評価回数を大幅に削減し,提案した変種は適応コストをさらに向上することがわかった。
論文 参考訳(メタデータ) (2023-05-31T12:07:50Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
分解に基づく多目的進化アルゴリズム(MOEA/D)は、多目的最適化問題(MOP)を解く上で、極めて有望なアプローチであると考えられている。
本稿では,よく知られたPascoletti-Serafiniスキャラライゼーション法とマルチ参照ポイントの新たな戦略により,MOEA/Dアルゴリズムの改良を提案する。
論文 参考訳(メタデータ) (2021-10-27T02:07:08Z) - Better call Surrogates: A hybrid Evolutionary Algorithm for
Hyperparameter optimization [18.359749929678635]
機械学習(ML)モデルのハイパーパラメータ最適化のための代理支援進化アルゴリズム(EA)を提案する。
提案したSTEADEモデルは,まずRadialBasis関数を用いて目的関数のランドスケープを推定し,その知識を微分進化(differial Evolution)と呼ばれるEA技術に伝達する。
NeurIPS 2020のブラックボックス最適化課題の一環として、ハイパーパラメータ最適化問題に関するモデルを実証的に評価し、STEADEがバニラEAにもたらした改善を実証しました。
論文 参考訳(メタデータ) (2020-12-11T16:19:59Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
本稿では,GDC(Generative, Discriminative, and Corrective)の原則を集約する,最適化に着想を得た統合学習フレームワークを提案する。
フレキシブルな組み合わせで最適化モデルを効果的に解くために,3つのプロパゲーティブモジュールを構築した。
低レベル視覚タスクにおける実験は、GDCの有効性と適応性を検証する。
論文 参考訳(メタデータ) (2020-12-10T03:24:53Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - dMFEA-II: An Adaptive Multifactorial Evolutionary Algorithm for
Permutation-based Discrete Optimization Problems [6.943742860591444]
本稿では、最近導入されたMFEA-II(Multifactorial Evolutionary Algorithm II)を、置換に基づく離散環境に適用する。
提案手法の性能を5種類のマルチタスク設定で評価した。
論文 参考訳(メタデータ) (2020-04-14T14:42:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。