A Study on Neuro-Symbolic Artificial Intelligence: Healthcare Perspectives
- URL: http://arxiv.org/abs/2503.18213v1
- Date: Sun, 23 Mar 2025 21:33:38 GMT
- Title: A Study on Neuro-Symbolic Artificial Intelligence: Healthcare Perspectives
- Authors: Delower Hossain, Jake Y Chen,
- Abstract summary: Symbolic AI excels in reasoning, explainability, and knowledge representation but faces challenges in processing complex real-world data with noise.<n>Deep learning (Black-Box systems) research breakthroughs in neural networks are notable, yet they lack reasoning and interpretability.<n>Neuro-symbolic AI (NeSy) attempts to bridge this gap by integrating logical reasoning into neural networks, enabling them to learn and reason with symbolic representations.
- Score: 2.5782420501870296
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Over the last few decades, Artificial Intelligence (AI) scientists have been conducting investigations to attain human-level performance by a machine in accomplishing a cognitive task. Within machine learning, the ultimate aspiration is to attain Artificial General Intelligence (AGI) through a machine. This pursuit has led to the exploration of two distinct AI paradigms. Symbolic AI, also known as classical or GOFAI (Good Old-Fashioned AI) and Connectionist (Sub-symbolic) AI, represented by Neural Systems, are two mutually exclusive paradigms. Symbolic AI excels in reasoning, explainability, and knowledge representation but faces challenges in processing complex real-world data with noise. Conversely, deep learning (Black-Box systems) research breakthroughs in neural networks are notable, yet they lack reasoning and interpretability. Neuro-symbolic AI (NeSy), an emerging area of AI research, attempts to bridge this gap by integrating logical reasoning into neural networks, enabling them to learn and reason with symbolic representations. While a long path, this strategy has made significant progress towards achieving common sense reasoning by systems. This article conducts an extensive review of over 977 studies from prominent scientific databases (DBLP, ACL, IEEExplore, Scopus, PubMed, ICML, ICLR), thoroughly examining the multifaceted capabilities of Neuro-Symbolic AI, with a particular focus on its healthcare applications, particularly in drug discovery, and Protein engineering research. The survey addresses vital themes, including reasoning, explainability, integration strategies, 41 healthcare-related use cases, benchmarking, datasets, current approach limitations from both healthcare and broader perspectives, and proposed novel approaches for future experiments.
Related papers
- Towards Efficient Neuro-Symbolic AI: From Workload Characterization to Hardware Architecture [22.274696991107206]
Neuro-symbolic AI emerges as a promising paradigm, fusing neural and symbolic approaches to enhance interpretability, robustness, and trustworthiness.
Recent neuro-symbolic systems have demonstrated great potential in collaborative human-AI scenarios with reasoning and cognitive capabilities.
We first systematically categorize neuro-symbolic AI algorithms, and then experimentally evaluate and analyze them in terms of runtime, memory, computational operators, sparsity, and system characteristics.
arXiv Detail & Related papers (2024-09-20T01:32:14Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Advancing Explainable AI Toward Human-Like Intelligence: Forging the
Path to Artificial Brain [0.7770029179741429]
The intersection of Artificial Intelligence (AI) and neuroscience in Explainable AI (XAI) is pivotal for enhancing transparency and interpretability in complex decision-making processes.
This paper explores the evolution of XAI methodologies, ranging from feature-based to human-centric approaches.
The challenges in achieving explainability in generative models, ensuring responsible AI practices, and addressing ethical implications are discussed.
arXiv Detail & Related papers (2024-02-07T14:09:11Z) - Advancing Perception in Artificial Intelligence through Principles of
Cognitive Science [6.637438611344584]
We focus on the cognitive functions of perception, which is the process of taking signals from one's surroundings as input, and processing them to understand the environment.
We present a collection of methods in AI for researchers to build AI systems inspired by cognitive science.
arXiv Detail & Related papers (2023-10-13T01:21:55Z) - A Survey on Brain-Inspired Deep Learning via Predictive Coding [85.93245078403875]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Towards Data-and Knowledge-Driven Artificial Intelligence: A Survey on Neuro-Symbolic Computing [73.0977635031713]
Neural-symbolic computing (NeSy) has been an active research area of Artificial Intelligence (AI) for many years.
NeSy shows promise of reconciling the advantages of reasoning and interpretability of symbolic representation and robust learning in neural networks.
arXiv Detail & Related papers (2022-10-28T04:38:10Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AI aims to combine interpretability of symbolic techniques with the ability of deep learning to learn from raw data.
We introduce Neuro-Symbolic Inductive Learner (NSIL), an approach that trains a general neural network to extract latent concepts from raw data.
NSIL learns expressive knowledge, solves computationally complex problems, and achieves state-of-the-art performance in terms of accuracy and data efficiency.
arXiv Detail & Related papers (2022-05-25T12:41:59Z) - Neurocompositional computing: From the Central Paradox of Cognition to a
new generation of AI systems [120.297940190903]
Recent progress in AI has resulted from the use of limited forms of neurocompositional computing.
New, deeper forms of neurocompositional computing create AI systems that are more robust, accurate, and comprehensible.
arXiv Detail & Related papers (2022-05-02T18:00:10Z) - Neurosymbolic AI: The 3rd Wave [1.14219428942199]
Concerns about trust, safety, interpretability and accountability of AI were raised by influential thinkers.
Many have identified the need for well-founded knowledge representation and reasoning to be integrated with deep learning.
Neural-symbolic computing has been an active area of research seeking to bring together robust learning in neural networks with reasoning and explainability.
arXiv Detail & Related papers (2020-12-10T18:31:38Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.