The Zeno and anti-Zeno effects: studying modified decay rates for
spin-boson models with both strong and weak system-environment couplings
- URL: http://arxiv.org/abs/2012.05911v1
- Date: Thu, 10 Dec 2020 12:48:35 GMT
- Title: The Zeno and anti-Zeno effects: studying modified decay rates for
spin-boson models with both strong and weak system-environment couplings
- Authors: Irfan Javed and Mohsin Raza
- Abstract summary: We look into what happens to a quantum system if system evolution is removed before each measurement is performed.
We find that the general effects of strong and weak couplings turn out to be the same as those in the presence of system evolution.
- Score: 0.685316573653194
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we look into what happens to a quantum system under repeated
measurements if system evolution is removed before each measurement is
performed. Beginning with investigating a single two-level system coupled to
two independent baths of harmonic oscillators, we move to replacing it with a
large collection of such systems, thereby invoking the large spin-boson model.
Whereas each of our two-level systems interacts strongly with one of the
aforementioned baths, it interacts weakly with the other. A polaron
transformation is used to make it possible for the problem in the strong
coupling regime to be treated with perturbation theory. We find that the case
involving a single two-level system exhibits qualitative and quantitative
differences from the case involving a collection of them; however, the general
effects of strong and weak couplings turn out to be the same as those in the
presence of system evolution, something which allows us to establish that
system evolution has no practical bearing on any of these effects.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Observing Time-Dependent Energy Level Renormalisation in an Ultrastrongly Coupled Open System [37.69303106863453]
We show how strong coupling and memory effects influence the energy levels of open quantum systems.
Measurements reveal a time-dependent shift in the system's energy levels of up to 15% of the bare system frequency.
Our findings provide direct evidence of dynamic energy level renormalisation in strongly coupled open quantum systems.
arXiv Detail & Related papers (2024-08-28T16:40:55Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Tailoring population transfer between two hyperfine ground states of
Rb87 [49.1574468325115]
We investigate the coherent control over a complex multi-level atomic system using the stimulated Raman adiabatic passage (STIRAP)
We demonstrate the ability to decompose the system into three- and four-level subsystems independently interacting with light beams.
arXiv Detail & Related papers (2022-10-21T14:57:21Z) - Pure Dephasing of Light-Matter Systems in the Ultrastrong and
Deep-Strong Coupling Regimes [0.21108097398435333]
Pure dephasing originates from the non-dissipative information exchange between quantum systems and environments.
Here we investigate how pure dephasing of one of the components of a hybrid quantum system affects the dephasing rate of the system transitions.
arXiv Detail & Related papers (2022-05-11T08:57:15Z) - The quantum Zeno and anti-Zeno effects in the strong coupling regime [0.0]
We study the effects of repeated projective measurements on a two-level system interacting strongly with its environment.
Our results should be useful for the quantum control of a two-level system interacting with its environment.
arXiv Detail & Related papers (2021-12-09T11:46:25Z) - Exact dynamics of non-additive environments in non-Markovian open
quantum systems [0.0]
We present a numerically-exact and efficient technique for tackling the problem of capturing multi-bath system dynamics.
We test the method by applying it to a simple model system that exhibits non-additive behaviour.
We uncover a new regime where the quantum Zeno effect leads to a fully mixed state of the electronic system.
arXiv Detail & Related papers (2021-09-17T10:08:37Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Signatures of bath-induced quantum avalanches in a many-body--localized
system [47.187609203210705]
Quantum avalanches occur when the system is locally coupled to a small thermal inclusion that acts as a bath.
We realize an interface between a many-body--localized system and a thermal inclusion of variable size, and study its dynamics.
arXiv Detail & Related papers (2020-12-30T18:34:34Z) - Impact of independent reservoirs on the quantum Zeno and anti-Zeno
effects [0.5801044612920815]
We look at what happens to a quantum system if it interacts with two independent reservoirs.
We show that the presence of the strongly coupled reservoir can actually reduce the decay rate of the quantum system due to the effect of the weakly-coupled reservoir.
arXiv Detail & Related papers (2020-12-10T10:43:34Z) - Non-destructively probing the thermodynamics of quantum systems with
qumodes [0.6144680854063939]
In quantum systems there is often a destruction of the system itself due to the means of measurement.
One approach to circumventing this is the use of ancillary probes that couple to the system under investigation.
We highlight means by which continuous variable quantum modes (qumodes) can be employed to probe the thermodynamics of quantum systems in and out of equilibrium.
arXiv Detail & Related papers (2017-07-13T17:57:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.