Dissipative evolution of a two-level system through a geometry-based classical mapping
- URL: http://arxiv.org/abs/2501.03760v1
- Date: Tue, 07 Jan 2025 13:02:24 GMT
- Title: Dissipative evolution of a two-level system through a geometry-based classical mapping
- Authors: Daniel Martínez Gil, Pedro Bargueño, Salvador Miret-Artés,
- Abstract summary: We study the dynamics of both isolated and interacting two-level systems.
Our model turns an isolated symmetric two-level system into an environment-assisted asymmetric one.
- Score: 0.0
- License:
- Abstract: In this manuscript, we introduce a geometry-based formalism to obtain a Meyer-Miller-Stock-Thoss mapping in order to study the dynamics of both isolated and interacting two-level systems. After showing the description of the isolated case using canonically conjugate variables, we implement an interaction model by bilinearly coupling the corresponding population differences {\it \`a la} Caldeira-Leggett, showing that the dynamics behave as a Gross-Pitaevskii-like one. We also find a transition between oscillatory and tunneling-suppressed dynamics that can be observed by varying the coupling constant. After extending our model to the {\it system plus environment} case, where the environment is considered as a collection of two-level systems, we show tunneling-suppressed dynamics in the strong coupling limit and the usual damping effect similar to that of a harmonic oscillator bath in the weak coupling one. Finally, we observe that our interacting model turns an isolated symmetric two-level system into an environment-assisted asymmetric one.
Related papers
- Exceptional Points and Stability in Nonlinear Models of Population Dynamics having $\mathcal{PT}$ symmetry [49.1574468325115]
We analyze models governed by the replicator equation of evolutionary game theory and related Lotka-Volterra systems of population dynamics.
We study the emergence of exceptional points in two cases: (a) when the governing symmetry properties are tied to global properties of the models, and (b) when these symmetries emerge locally around stationary states.
arXiv Detail & Related papers (2024-11-19T02:15:59Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Classical-quantum correspondence in the noise-based dissipative systems [5.207420796114437]
We investigate the correspondence between classical noise and quantum environments.
We construct the so-called central spin model with its couplings fluctuating as the classical noise.
By adjusting the number of the auxiliary systems and their initial states, the noise-based model reproduces both Markovian and non-Markovian evolutions.
arXiv Detail & Related papers (2024-08-07T04:43:19Z) - Manipulating growth and propagation of correlations in dipolar
multilayers: From pair production to bosonic Kitaev models [0.0]
We map the many-body spin dynamics to bosonic models.
In a bilayer configuration we show how to engineer the paradigmatic two-mode squeezing Hamiltonian known from quantum optics.
In multi-layer configurations we engineer a bosonic variant of the Kitaev model displaying chiral propagation along the layer direction.
arXiv Detail & Related papers (2022-11-22T19:00:01Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Realistic simulations of spin squeezing and cooperative coupling effects
in large ensembles of interacting two-level systems [0.0]
We describe an efficient numerical method for simulating the dynamics of interacting spin ensembles in the presence of dephasing and decay.
This opens up the possibility to perform accurate real-scale simulations of a diverse range of experiments in quantum optics or with solid-state spin ensembles under realistic laboratory conditions.
arXiv Detail & Related papers (2021-04-30T18:00:00Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Classical critical dynamics in quadratically driven Kerr resonators [0.0]
Driven-dissipative kerr lattices with two-photon driving are experimentally relevant systems.
We show that the Liouvillian gap scales with the same exponent, similar to scaling of the Hamiltonian gap at quantum phase transitions in closed systems.
arXiv Detail & Related papers (2020-02-14T18:48:05Z) - Dynamics of quantum correlations in a Qubit-Oscillator system
interacting via a dissipative bath [0.0]
We study the entanglement dynamics in a bipartite system consisting of a qubit and a harmonic oscillator interacting only through their coupling with the same bath.
Based on the Kossakowski Matrix, we show that non-classical correlations including entanglement can be generated by the considered dynamics.
arXiv Detail & Related papers (2020-02-11T02:29:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.