Experimental feasibility of molecular two-photon absorption with
isolated time-frequency-entangled photon pairs
- URL: http://arxiv.org/abs/2012.06736v1
- Date: Sat, 12 Dec 2020 05:36:50 GMT
- Title: Experimental feasibility of molecular two-photon absorption with
isolated time-frequency-entangled photon pairs
- Authors: Tiemo Landes, Markus Allgaier, Sofiane Merkouche, Brian J. Smith,
Andrew H. Marcus, Michael G. Raymer
- Abstract summary: Entangled photon pairs have been promised to deliver a substantial quantum advantage for two-photon absorption spectroscopy.
Recent work has challenged the previously reported magnitude of quantum enhancement in two-photon absorption.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entangled photon pairs have been promised to deliver a substantial quantum
advantage for two-photon absorption spectroscopy. However, recent work has
challenged the previously reported magnitude of quantum enhancement in
two-photon absorption. Here, we present an experimental comparison of
sum-frequency generation and molecular absorption, each driven by isolated
photon pairs. We establish an upper bound on the enhancement for
entangled-two-photon absorption in Rhodamine-6G, which lies well below
previously reported values.
Related papers
- Enhancing entangled two-photon absorption of Nile Red via temperature-controlled SPDC [0.0]
Entangled two-photon absorption can enable a linear scaling of fluorescence emission with the excitation power.
Existing theoretical models struggle to accurately predict the entangled-two-photon-absorption behavior of chemically complex dyes.
arXiv Detail & Related papers (2024-06-03T07:49:37Z) - Two-photon pulse scattering spectroscopy for arrays of two-level atoms,
coupled to the waveguide [125.99533416395765]
We have theoretically studied the scattering of two-photon pulses from a spatially-separated array of two-level atoms coupled to a waveguide.
The contributions of various single-eigenstate and double-excited eigenstates of the array have been analyzed.
arXiv Detail & Related papers (2023-02-27T22:05:07Z) - Witnessing Entangled Two-Photon Absorption via Quantum Interferometry [0.0]
In this work, we focus on transmission measurements of entangled two-photon absorption (eTPA)
We demonstrate that the so-called N00N-state configuration is the only one amongst those considered insensitive to linear (single-photon) losses.
Our results show that N00N states may become a potentially powerful tool for quantum spectroscopy, and place them as a strong candidate for the certification of eTPA in an arbitrary sample.
arXiv Detail & Related papers (2022-08-24T09:11:10Z) - Spatial properties of entangled two-photon absorption [0.0]
We experimentally study entangled two-photon absorption in Rhodamine 6G as a function of the spatial properties of a high flux of broadband entangled photon pairs.
We demonstrate a key signature dependence of the entangled two-photon absorption rate on the type of entangled pair flux attenuation.
arXiv Detail & Related papers (2022-06-01T13:56:40Z) - Aspects of Two-photon Absorption of Squeezed Light: the CW limit [0.0]
We find an enhancement of the two-photon absorption due to resonant contributions from the large squeezed light bandwidth.
One-photon absorption is the dominant process in the region of parameter space where a large enhancement of the two-photon absorption is possible.
arXiv Detail & Related papers (2022-05-16T07:34:03Z) - Hot-Band Absorption Can Mimic Entangled Two-Photon Absorption [52.77024349608834]
We investigated the fluorescence signals from Rhodamine 6G and LDS798 excited with a CW laser or an entangled photon pair source at 1060 nm.
We observed a signal that originates from hot-band absorption (HBA), which is one-photon absorption from thermally-populated vibrational levels of the ground electronic state.
For the typical conditions under which E2PEF measurements are performed, contributions from the HBA process could lead to a several orders-of-magnitude overestimate of the quantum advantage for excitation efficiency.
arXiv Detail & Related papers (2021-11-10T21:17:47Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Setting bounds on two-photon absorption cross-sections in common
fluorophores with entangled photon pair excitation [48.7576911714538]
We use a fluorescence-based registration scheme to experimentally determine upper bounds on the cross-sections for six fluorophores.
For two samples that have been studied by others, Rhodamine 6G and 9R-S, we measure upper bounds four and five orders of magnitude lower than the previously reported cross-sections.
arXiv Detail & Related papers (2020-08-06T13:53:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.