Witnessing Entangled Two-Photon Absorption via Quantum Interferometry
- URL: http://arxiv.org/abs/2208.11387v2
- Date: Wed, 26 Oct 2022 16:46:14 GMT
- Title: Witnessing Entangled Two-Photon Absorption via Quantum Interferometry
- Authors: \'Aulide Mart\'inez-Tapia, Samuel Corona-Aquino, Chenglong You, Rui-Bo
Jin, Omar S. Maga\~na-Loaiza, Shi-Hai Dong, Alfred B. U'Ren, Roberto de J.
Le\'on-Montiel
- Abstract summary: In this work, we focus on transmission measurements of entangled two-photon absorption (eTPA)
We demonstrate that the so-called N00N-state configuration is the only one amongst those considered insensitive to linear (single-photon) losses.
Our results show that N00N states may become a potentially powerful tool for quantum spectroscopy, and place them as a strong candidate for the certification of eTPA in an arbitrary sample.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent investigations suggest that the use of non-classical states of light,
such as entangled photon pairs, may open new and exciting avenues in
experimental two-photon absorption spectroscopy. Despite several experimental
studies of entangled two-photon absorption (eTPA), there is still a heated
debate on whether eTPA has truly been observed. This interesting debate has
arisen, mainly because it has been recently argued that single-photon-loss
mechanisms, such as scattering or hot-band absorption may mimic the expected
entangled-photon linear absorption behavior. In this work, we focus on
transmission measurements of eTPA, and explore three different two-photon
quantum interferometers in the context of assessing eTPA. We demonstrate that
the so-called N00N-state configuration is the only one amongst those considered
insensitive to linear (single-photon) losses. Remarkably, our results show that
N00N states may become a potentially powerful tool for quantum spectroscopy,
and place them as a strong candidate for the certification of eTPA in an
arbitrary sample.
Related papers
- Towards robust detection of entangled two-photon absorption [0.0]
Evidence for entangled two-photon absorption (ETPA) effects remain highly debated, especially at low-fluxes.
Here, we structure the transverse spatial correlations of entangled photon pairs to evidence signs of ETPA at room-temperature in organic and inorganic chromophores.
Our results present a step towards verifying ETPA and experimentally exploring entangled light-matter interactions.
arXiv Detail & Related papers (2024-10-08T16:58:47Z) - Two-photon absorption cross sections of pulsed entangled beams [0.0]
Entangled two-photon absorption (ETPA) could form the basis of nonlinear quantum spectroscopy.
We show that quantum-enhanced cross sections can persist even to very large photon numbers.
arXiv Detail & Related papers (2023-11-30T19:57:41Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Hot-Band Absorption Can Mimic Entangled Two-Photon Absorption [52.77024349608834]
We investigated the fluorescence signals from Rhodamine 6G and LDS798 excited with a CW laser or an entangled photon pair source at 1060 nm.
We observed a signal that originates from hot-band absorption (HBA), which is one-photon absorption from thermally-populated vibrational levels of the ground electronic state.
For the typical conditions under which E2PEF measurements are performed, contributions from the HBA process could lead to a several orders-of-magnitude overestimate of the quantum advantage for excitation efficiency.
arXiv Detail & Related papers (2021-11-10T21:17:47Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Investigating the coherent state detection probability of InGaAs/InP
SPAD-based single-photon detectors [55.41644538483948]
We investigate the probabilities of detecting single- and multi-photon coherent states on InGaAs/InP sine-gated and free-run avalanche diodes.
We conclude that multi-photon state detection cannot be regarded as independent events of absorption of individual single-photon states.
arXiv Detail & Related papers (2021-04-16T08:08:48Z) - Entangled Two-Photon Absorption by Atoms and Molecules: A Quantum Optics
Tutorial [0.0]
Two-photon absorption (TPA) and other nonlinear interactions of molecules with time-frequency-entangled photon pairs (EPP) has been predicted to display a variety of fascinating effects.
This paper presents a detailed theoretical study of one- and two-photon absorption by molecules, focusing on how to treat the quantum nature of light.
arXiv Detail & Related papers (2021-03-03T17:46:46Z) - Experimental study on the effects of photon-pair temporal correlations
in entangled two-photon absorption [0.0]
Entangled two-photon absorption (ETPA) has recently become a topic of lively debate.
This work provides a thorough experimental study of ETPA in Rhodamine B and Zinc Tetraphenylporphirin.
arXiv Detail & Related papers (2021-01-26T18:31:09Z) - Experimental feasibility of molecular two-photon absorption with
isolated time-frequency-entangled photon pairs [0.0]
Entangled photon pairs have been promised to deliver a substantial quantum advantage for two-photon absorption spectroscopy.
Recent work has challenged the previously reported magnitude of quantum enhancement in two-photon absorption.
arXiv Detail & Related papers (2020-12-12T05:36:50Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Setting bounds on two-photon absorption cross-sections in common
fluorophores with entangled photon pair excitation [48.7576911714538]
We use a fluorescence-based registration scheme to experimentally determine upper bounds on the cross-sections for six fluorophores.
For two samples that have been studied by others, Rhodamine 6G and 9R-S, we measure upper bounds four and five orders of magnitude lower than the previously reported cross-sections.
arXiv Detail & Related papers (2020-08-06T13:53:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.