Enhancing entangled two-photon absorption of Nile Red via temperature-controlled SPDC
- URL: http://arxiv.org/abs/2406.01075v1
- Date: Mon, 3 Jun 2024 07:49:37 GMT
- Title: Enhancing entangled two-photon absorption of Nile Red via temperature-controlled SPDC
- Authors: Aleksa Krstić, Tobias Bernd Gäbler, Nitish Jain, Patrick Then, Valerio Flavio Gili, Sina Saravi, Frank Setzpfandt, Christian Eggeling, Markus Gräfe,
- Abstract summary: Entangled two-photon absorption can enable a linear scaling of fluorescence emission with the excitation power.
Existing theoretical models struggle to accurately predict the entangled-two-photon-absorption behavior of chemically complex dyes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entangled two-photon absorption can enable a linear scaling of fluorescence emission with the excitation power. In comparison to classical two-photon absorption with a quadratic scaling, this can allow fluorescence imaging or photolithography with high axial resolution at minimal exposure intensities. However, most experimental studies on two-photon absorption were not able to show an unambiguous proof of fluorescence emission driven by entangled photon pairs. On the other hand, existing theoretical models struggle to accurately predict the entangled-two-photon-absorption behavior of chemically complex dyes. In this paper, we introduce an approach to simulate entangled two-photon absorption in common fluorescence dyes considering their chemical properties. Our theoretical model allows a deeper understanding of experimental results and thus the occurrence of entangled two-photon absorption. In particular, we found a remarkable dependency of the absorption probability on the phase-matching temperature of the nonlinear material. Further, we compared results of our theoretical approach to experimental data for Nile Red.
Related papers
- Limitations in Fluorescence-Detected Entangled Two-Photon-Absorption Experiments: Exploring the Low- to High-Gain Squeezing Regimes [0.0]
We study efforts to enable quantum-enhanced molecular spectroscopy and imaging at ultra-low optical flux.
Time-frequency photon entanglement does not provide a practical means to enhance in-solution molecular two-photon fluorescence spectroscopy or imaging.
arXiv Detail & Related papers (2024-04-25T05:36:47Z) - Coherence in resonance fluorescence [12.793630118234434]
Resonance fluorescence (RF) of a two-level emitter displays persistently anti-bunching irrespective of the excitation intensity.
Recent theory attributes anti-bunching to the laser-like spectrum's interference with the incoherently scattered light.
arXiv Detail & Related papers (2023-12-21T11:25:31Z) - Spatial properties of entangled two-photon absorption [0.0]
We experimentally study entangled two-photon absorption in Rhodamine 6G as a function of the spatial properties of a high flux of broadband entangled photon pairs.
We demonstrate a key signature dependence of the entangled two-photon absorption rate on the type of entangled pair flux attenuation.
arXiv Detail & Related papers (2022-06-01T13:56:40Z) - Single Photon Scattering Can Account for the Discrepancies Between
Entangled Two-Photon Measurement Techniques [0.0]
Entangled photon pairs are predicted to linearize and increase the efficiency of two-photon absorption.
Despite a range of theoretical studies and experimental measurements, inconsistencies persist about the value of the entanglement enhanced interaction cross section.
A spectrometer is constructed that can temporally and spectrally characterize the entangled photon state.
arXiv Detail & Related papers (2022-02-23T20:14:11Z) - Hot-Band Absorption Can Mimic Entangled Two-Photon Absorption [52.77024349608834]
We investigated the fluorescence signals from Rhodamine 6G and LDS798 excited with a CW laser or an entangled photon pair source at 1060 nm.
We observed a signal that originates from hot-band absorption (HBA), which is one-photon absorption from thermally-populated vibrational levels of the ground electronic state.
For the typical conditions under which E2PEF measurements are performed, contributions from the HBA process could lead to a several orders-of-magnitude overestimate of the quantum advantage for excitation efficiency.
arXiv Detail & Related papers (2021-11-10T21:17:47Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Symmetry allows for distinguishability in totally destructive
many-particle interference [52.77024349608834]
We investigate, in a four photon interference experiment in a laser-written waveguide structure, how symmetries control the suppression of many-body output events of a $J_x$ unitary.
We show that totally destructive interference does not require mutual indistinguishability between all, but only between symmetrically paired particles.
arXiv Detail & Related papers (2021-02-19T16:37:19Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Experimental feasibility of molecular two-photon absorption with
isolated time-frequency-entangled photon pairs [0.0]
Entangled photon pairs have been promised to deliver a substantial quantum advantage for two-photon absorption spectroscopy.
Recent work has challenged the previously reported magnitude of quantum enhancement in two-photon absorption.
arXiv Detail & Related papers (2020-12-12T05:36:50Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Setting bounds on two-photon absorption cross-sections in common
fluorophores with entangled photon pair excitation [48.7576911714538]
We use a fluorescence-based registration scheme to experimentally determine upper bounds on the cross-sections for six fluorophores.
For two samples that have been studied by others, Rhodamine 6G and 9R-S, we measure upper bounds four and five orders of magnitude lower than the previously reported cross-sections.
arXiv Detail & Related papers (2020-08-06T13:53:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.