論文の概要: Anomaly detection through latent space restoration using
vector-quantized variational autoencoders
- arxiv url: http://arxiv.org/abs/2012.06765v1
- Date: Sat, 12 Dec 2020 09:19:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-10 09:09:08.232522
- Title: Anomaly detection through latent space restoration using
vector-quantized variational autoencoders
- Title(参考訳): ベクトル量子化変分オートエンコーダを用いた潜時空間復元による異常検出
- Authors: Sergio Naval Marimont and Giacomo Tarroni
- Abstract要約: 本稿では,密度と復元に基づく手法を用いた分散検出手法を提案する。
VQ-VAEモデルは、分類的潜在空間で画像をエンコードすることを学ぶ。
潜在コードの事前分布は、オートリグレッシブ(ar)モデルを使用してモデル化される。
- 参考スコア(独自算出の注目度): 0.8122270502556374
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an out-of-distribution detection method that combines density and
restoration-based approaches using Vector-Quantized Variational Auto-Encoders
(VQ-VAEs). The VQ-VAE model learns to encode images in a categorical latent
space. The prior distribution of latent codes is then modelled using an
Auto-Regressive (AR) model. We found that the prior probability estimated by
the AR model can be useful for unsupervised anomaly detection and enables the
estimation of both sample and pixel-wise anomaly scores. The sample-wise score
is defined as the negative log-likelihood of the latent variables above a
threshold selecting highly unlikely codes. Additionally, out-of-distribution
images are restored into in-distribution images by replacing unlikely latent
codes with samples from the prior model and decoding to pixel space. The
average L1 distance between generated restorations and original image is used
as pixel-wise anomaly score. We tested our approach on the MOOD challenge
datasets, and report higher accuracies compared to a standard
reconstruction-based approach with VAEs.
- Abstract(参考訳): 本稿では,ベクトル量子化変分オートエンコーダ(vq-vaes)を用いた密度と復元に基づく手法を組み合わせた分散検出手法を提案する。
VQ-VAEモデルは、カテゴリの潜在空間で画像をエンコードすることを学ぶ。
潜在コードの事前分布は、オートリグレッシブ(ar)モデルを使用してモデル化される。
我々は,ARモデルにより推定される事前確率は,教師なし異常検出に有用であり,サンプル値と画素値の両方の異常スコアを推定できることを示した。
サンプルワイズスコアは、非常に不可能な符号を選択するしきい値の上の潜伏変数の負の対数類似度として定義される。
さらに、未実現の潜在コードを先行モデルからサンプルに置き換え、画素空間にデコードすることにより、配信外画像を配信内画像に復元する。
生成した復元と原画像の平均L1距離を画素ワイド異常スコアとする。
提案手法をMOODチャレンジデータセットで検証し,VAEを用いた標準的な再構築手法と比較して高い精度を報告した。
関連論文リスト
- DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Autoencoding Variational Autoencoder [56.05008520271406]
我々は,この行動が学習表現に与える影響と,自己整合性の概念を導入することでそれを修正する結果について検討する。
自己整合性アプローチで訓練されたエンコーダは、敵攻撃による入力の摂動に対して頑健な(無神経な)表現につながることを示す。
論文 参考訳(メタデータ) (2020-12-07T14:16:14Z) - Addressing Variance Shrinkage in Variational Autoencoders using Quantile
Regression [0.0]
可変変分オートエンコーダ (VAE) は, 医用画像の病変検出などの応用において, 異常検出の一般的なモデルとなっている。
本稿では,分散の縮小や過小評価といったよく知られた問題を避けるための代替手法について述べる。
ガウスの仮定の下で推定された定量値を用いて平均値と分散値を計算し、再構成確率を外乱検出や異常検出の原理的アプローチとして計算する。
論文 参考訳(メタデータ) (2020-10-18T17:37:39Z) - CQ-VAE: Coordinate Quantized VAE for Uncertainty Estimation with
Application to Disk Shape Analysis from Lumbar Spine MRI Images [1.5841288368322592]
本稿では,あいまいさの表現を学習し,確率的出力を生成するための強力な生成モデルを提案する。
我々のモデルは、CQ-VAE (Coordinate Quantization Variational Autoencoder) と呼ばれ、内部の離散確率分布を持つ離散潜在空間を用いている。
マッチングアルゴリズムを用いて、モデル生成サンプルと「地下構造」サンプルの対応性を確立する。
論文 参考訳(メタデータ) (2020-10-17T04:25:32Z) - Uncertainty Inspired RGB-D Saliency Detection [70.50583438784571]
本稿では,データラベリングプロセスから学習することで,RGB-D値検出の不確実性を利用した最初のフレームワークを提案する。
そこで本研究では,確率的RGB-Dサリエンシ検出を実現するために,サリエンシデータラベリングプロセスにインスパイアされた生成アーキテクチャを提案する。
6つの挑戦的RGB-Dベンチマークデータセットの結果から,サリエンシマップの分布を学習する際のアプローチの優れた性能が示された。
論文 参考訳(メタデータ) (2020-09-07T13:01:45Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Unsupervised Lesion Detection via Image Restoration with a Normative
Prior [6.495883501989547]
本稿では,ネットワークをベースとした事前分布を規範分布とし,MAP推定を用いて画素単位で病変を検出する確率モデルを提案する。
脳MRIにおけるグリオーマと脳卒中病変の実験は、提案手法が最先端の教師なし手法よりかなり優れていることを示している。
論文 参考訳(メタデータ) (2020-04-30T18:03:18Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。