Perfect discrimination of quantum measurements using entangled systems
- URL: http://arxiv.org/abs/2012.07069v2
- Date: Sun, 11 Apr 2021 07:40:41 GMT
- Title: Perfect discrimination of quantum measurements using entangled systems
- Authors: Chandan Datta, Tanmoy Biswas, Debashis Saha, and Remigiusz Augusiak
- Abstract summary: We investigate the problem of single-shot discrimination of quantum measurements using two strategies.
One based on single quantum systems and the other one based on entangled quantum systems.
We show that any advantage in measurement discrimination tasks over single systems is a demonstration of Einstein-Podolsky-Rosen 'quantum steering'
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distinguishing physical processes is one of the fundamental problems in
quantum physics. Although distinguishability of quantum preparations and
quantum channels have been studied considerably, distinguishability of quantum
measurements remains largely unexplored. We investigate the problem of
single-shot discrimination of quantum measurements using two strategies, one
based on single quantum systems and the other one based on entangled quantum
systems. First, we formally define both scenarios. We then construct sets of
measurements (including non-projective) in arbitrary finite dimensions that are
perfectly distinguishable within the second scenario using quantum
entanglement, while not in the one based on single quantum systems.
Furthermore, we show that any advantage in measurement discrimination tasks
over single systems is a demonstration of Einstein-Podolsky-Rosen 'quantum
steering'. Alongside, we prove that all pure two-qubit entangled states provide
an advantage in a measurement discrimination task over one-qubit systems.
Related papers
- Entanglement measurement based on convex hull properties [0.0]
We will propose a scheme for measuring quantum entanglement, which starts with treating the set of quantum separable states as a convex hull of quantum separable pure states.
Although a large amount of data is required in the measurement process, this method is not only applicable to 2-qubit quantum states, but also a entanglement measurement method that can be applied to any dimension and any fragment.
arXiv Detail & Related papers (2024-11-08T08:03:35Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Quantum teleportation and dynamics of quantum coherence and metrological
non-classical correlations for open two-qubit systems: A study of Markovian
and non-Markovian regimes [0.0]
We study the dynamics of non-classical correlations and quantum coherence in open quantum systems.
Our focus is on a system of two qubits in two distinct physical situations.
We establish a quantum teleportation strategy based on the two different physical scenarios.
arXiv Detail & Related papers (2023-09-05T11:41:04Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Experimental Entanglement Quantification for Unknown Quantum States in a
Semi-Device-Independent Manner [5.3331673690188]
We show that quantum entanglement can be quantified for any unknown quantum states in a semi-device-independent manner.
We experimentally quantify the entanglement of formation and the entanglement of distillation for qutrit-qutrit quantum systems.
arXiv Detail & Related papers (2020-10-19T12:54:25Z) - Arbitrary Measurement on Any Real-valued Probability Amplitude in Any
Quantum System [0.0]
One novel quantum measurement scheme is proposed to solve these questions based on the idea of binary searching.
The proposed quantum measurement scheme has the performance in quantum information processing with twofold advantages: separable measurement and exponential speed up.
arXiv Detail & Related papers (2020-08-31T09:56:07Z) - Pure State Tomography with Fourier Transformation [3.469001874498102]
Two adaptive protocols are proposed, with their respective quantum circuits.
Experiments on the IBM 5-qubit quantum computer, as well as numerical investigations, demonstrate the feasibility of the proposed protocols.
arXiv Detail & Related papers (2020-08-20T17:13:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.