Variational State and Parameter Estimation
- URL: http://arxiv.org/abs/2012.07269v1
- Date: Mon, 14 Dec 2020 05:35:29 GMT
- Title: Variational State and Parameter Estimation
- Authors: Jarrad Courts and Johannes Hendriks and Adrian Wills and Thomas
Sch\"on and Brett Ninness
- Abstract summary: This paper considers the problem of computing Bayesian estimates of both states and model parameters for nonlinear state-space models.
A variational approach is used to provide an assumed density which approximates the desired, intractable, distribution.
The proposed method is compared against state-of-the-art Hamiltonian Monte Carlo in two numerical examples.
- Score: 0.8049701904919515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers the problem of computing Bayesian estimates of both
states and model parameters for nonlinear state-space models. Generally, this
problem does not have a tractable solution and approximations must be utilised.
In this work, a variational approach is used to provide an assumed density
which approximates the desired, intractable, distribution. The approach is
deterministic and results in an optimisation problem of a standard form. Due to
the parametrisation of the assumed density selected first- and second-order
derivatives are readily available which allows for efficient solutions. The
proposed method is compared against state-of-the-art Hamiltonian Monte Carlo in
two numerical examples.
Related papers
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
Surrogate models provide a quick-to-evaluate approximation to complex computational models.
We consider Bayesian inference for constructing statistical surrogates with input uncertainties and dimensionality reduction.
We demonstrate intrinsic and robust structural optimisation problems where cost functions depend on a weighted sum of the mean and standard deviation of model outputs.
arXiv Detail & Related papers (2024-04-23T09:22:35Z) - Moreau-Yoshida Variational Transport: A General Framework For Solving Regularized Distributional Optimization Problems [3.038642416291856]
We consider a general optimization problem of minimizing a composite objective functional defined over a class probability distributions.
We propose a novel method, dubbed as Moreau-Yoshida Variational Transport (MYVT), for solving the regularized distributional optimization problem.
arXiv Detail & Related papers (2023-07-31T01:14:42Z) - Sobolev Space Regularised Pre Density Models [51.558848491038916]
We propose a new approach to non-parametric density estimation that is based on regularizing a Sobolev norm of the density.
This method is statistically consistent, and makes the inductive validation model clear and consistent.
arXiv Detail & Related papers (2023-07-25T18:47:53Z) - Continuous Wasserstein-2 Barycenter Estimation without Minimax
Optimization [94.18714844247766]
Wasserstein barycenters provide a geometric notion of the weighted average of probability measures based on optimal transport.
We present a scalable algorithm to compute Wasserstein-2 barycenters given sample access to the input measures.
arXiv Detail & Related papers (2021-02-02T21:01:13Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Variational Nonlinear System Identification [0.8793721044482611]
This paper considers parameter estimation for nonlinear state-space models, which is an important but challenging problem.
We employ a variational inference (VI) approach, which is a principled method that has deep connections to maximum likelihood estimation.
This VI approach ultimately provides estimates of the model as solutions to an optimisation problem, which is deterministic, tractable and can be solved using standard optimisation tools.
arXiv Detail & Related papers (2020-12-08T05:43:50Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
We show that common optimization methods lead to poor variational approximations if the problem is moderately large.
Motivated by these findings, we develop a more robust and accurate optimization framework by viewing the underlying algorithm as producing a Markov chain.
arXiv Detail & Related papers (2020-09-01T19:12:11Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
We consider distributed optimization problems where forming the Hessian is computationally challenging and communication is a bottleneck.
We develop unbiased parameter averaging methods for randomized second order optimization that employ sampling and sketching of the Hessian.
We also extend the framework of second order averaging methods to introduce an unbiased distributed optimization framework for heterogeneous computing systems.
arXiv Detail & Related papers (2020-02-16T09:01:18Z) - Gaussian Variational State Estimation for Nonlinear State-Space Models [0.3222802562733786]
We consider the problem of state estimation, in the context of both filtering and smoothing, for nonlinear state-space models.
We develop an assumed Gaussian solution based on variational inference, which offers the key advantage of a flexible, but principled, mechanism for approxing the required distributions.
arXiv Detail & Related papers (2020-02-07T04:46:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.