論文の概要: Water Level Estimation Using Sentinel-1 Synthetic Aperture Radar Imagery
And Digital Elevation Models
- arxiv url: http://arxiv.org/abs/2012.07627v2
- Date: Mon, 28 Dec 2020 09:38:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-11 02:49:23.377839
- Title: Water Level Estimation Using Sentinel-1 Synthetic Aperture Radar Imagery
And Digital Elevation Models
- Title(参考訳): sentinel-1合成開口レーダ画像と数値標高モデルを用いた水位推定
- Authors: Thai-Bao Duong-Nguyen, Thien-Nu Hoang, Phong Vo and Hoai-Bac Le
- Abstract要約: Sentinel-1 Synthetic Aperture Radar ImageryとDigital Elevation Modelデータセットを用いた新しい水位抽出手法を提案する。
実験の結果、このアルゴリズムは世界中の3つの貯水池で0.93mの低い平均誤差を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hydropower dams and reservoirs have been identified as the main factors
redefining natural hydrological cycles. Therefore, monitoring water status in
reservoirs plays a crucial role in planning and managing water resources, as
well as forecasting drought and flood. This task has been traditionally done by
installing sensor stations on the ground nearby water bodies, which has
multiple disadvantages in maintenance cost, accessibility, and global coverage.
And to cope with these problems, Remote Sensing, which is known as the science
of obtaining information about objects or areas without making contact with
them, has been actively studied for many applications. In this paper, we
propose a novel water level extracting approach, which employs Sentinel-1
Synthetic Aperture Radar imagery and Digital Elevation Model data sets.
Experiments show that the algorithm achieved a low average error of 0.93 meters
over three reservoirs globally, proving its potential to be widely applied and
furthermore studied.
- Abstract(参考訳): 水力発電ダムと貯水池は、自然の水循環を再定義する主な要因である。
したがって、貯水池の水位モニタリングは、干ばつや洪水の予測と同様に、水資源の計画と管理において重要な役割を担っている。
この作業は伝統的に、メンテナンスコスト、アクセシビリティ、世界的なカバレッジに複数の欠点がある近くの水域にセンサーステーションを設置することで行われてきた。
これらの問題に対処するために、オブジェクトや領域に関する情報を接触することなく取得する科学として知られるリモートセンシングが、多くのアプリケーションで活発に研究されている。
本論文では,センチネル-1合成開口レーダ画像と数値標高モデルデータセットを用いた水位抽出手法を提案する。
実験の結果、このアルゴリズムは世界中の3つの貯水池で0.93mの低い平均誤差を達成し、広く適用される可能性を示し、さらに研究された。
関連論文リスト
- Towards an Autonomous Surface Vehicle Prototype for Artificial Intelligence Applications of Water Quality Monitoring [68.41400824104953]
本稿では,人工知能アルゴリズムの利用と水質モニタリングのための高感度センシング技術に対処する車両プロトタイプを提案する。
車両には水質パラメータと水深を測定するための高品質なセンサーが装備されている。
ステレオカメラにより、実際の環境でのマクロプラスチックの検出と検出も可能である。
論文 参考訳(メタデータ) (2024-10-08T10:35:32Z) - SEN12-WATER: A New Dataset for Hydrological Applications and its Benchmarking [40.996860106131244]
気候と干ばつの増加は、世界中の水資源管理に重大な課題をもたらしている。
本稿では,干ばつ関連分析のためのエンドツーエンドディープラーニングフレームワークを用いたベンチマークとともに,新しいデータセットであるSEN12-WATERを提案する。
論文 参考訳(メタデータ) (2024-09-25T16:50:59Z) - Using Multi-Temporal Sentinel-1 and Sentinel-2 data for water bodies
mapping [40.996860106131244]
気候変動は極端な気象現象を激化させ、水不足と激しい降雨の予測不可能の両方を引き起こしている。
本研究の目的は,多様な気象条件下での総合的な水資源モニタリングに有用な知見を提供することである。
論文 参考訳(メタデータ) (2024-01-05T18:11:08Z) - Leveraging Citizen Science for Flood Extent Detection using Machine
Learning Benchmark Dataset [0.9029386959445269]
我々は、アメリカ本土とバングラデシュ内の約36,000平方キロメートルの地域をカバーする、既知の洪水イベントの間に、ラベル付きの水域範囲と浸水地域の範囲を作成します。
また、データセットをオープンソース化し、データセットに基づいたオープンコンペティションを開催して、コミュニティ生成モデルを使用した洪水範囲検出を迅速にプロトタイプ化しました。
データセットはSentinel-1C SARデータに基づく既存のデータセットに追加され、より堅牢な洪水範囲のモデリングにつながります。
論文 参考訳(メタデータ) (2023-11-15T18:49:29Z) - DeepAqua: Self-Supervised Semantic Segmentation of Wetland Surface Water
Extent with SAR Images using Knowledge Distillation [44.99833362998488]
トレーニングフェーズ中に手動アノテーションを不要にする自己教師型ディープラーニングモデルであるDeepAquaを提案する。
我々は、光とレーダーをベースとしたウォーターマスクが一致する場合を利用して、水面と植物の両方を検知する。
実験の結果,DeepAquaの精度は7%向上し,Intersection Over Unionが27%,F1が14%向上した。
論文 参考訳(メタデータ) (2023-05-02T18:06:21Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - AquaFeL-PSO: A Monitoring System for Water Resources using Autonomous
Surface Vehicles based on Multimodal PSO and Federated Learning [0.0]
水資源の保存、モニタリング、管理は、ここ数十年で大きな課題となっている。
本稿では,水質センサを備えた自動表面車両を用いた水質モニタリングシステムを提案する。
論文 参考訳(メタデータ) (2022-11-28T10:56:12Z) - Dam reservoir extraction from remote sensing imagery using tailored
metric learning strategies [6.040904021861968]
本稿では,ダム貯水池抽出を水域セグメンテーションとダム貯水池認識に分解するディープニューラルネットワークを用いたパイプラインを提案する。
我々は西アフリカとインドの河川流域から得られた地球画像データと人間ラベル付き貯水池のベンチマークデータセットを構築した。
論文 参考訳(メタデータ) (2022-07-12T19:46:01Z) - Predictive Analytics for Water Asset Management: Machine Learning and
Survival Analysis [55.41644538483948]
本研究では,水管故障の予測のための統計的および機械学習の枠組みについて検討する。
スペイン,バルセロナの配水ネットワーク内の全管の故障記録を含むデータセットを用いて検討を行った。
その結果, 管形状, 年齢, 材質, 土壌被覆など, 重要な危険因子の影響が明らかにされた。
論文 参考訳(メタデータ) (2020-07-02T19:08:36Z) - A Data Scientist's Guide to Streamflow Prediction [55.22219308265945]
我々は,水文降雨要素と流出モデルに着目し,洪水の予測と流れの予測に応用する。
このガイドは、データサイエンティストが問題や水文学的な概念、そしてその過程で現れる詳細を理解するのを助けることを目的としています。
論文 参考訳(メタデータ) (2020-06-05T08:04:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。