論文の概要: Data-driven model reduction of agent-based systems using the Koopman
generator
- arxiv url: http://arxiv.org/abs/2012.07718v1
- Date: Mon, 14 Dec 2020 17:12:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-08 14:21:13.475658
- Title: Data-driven model reduction of agent-based systems using the Koopman
generator
- Title(参考訳): Koopman ジェネレータを用いたエージェントベースシステムのデータ駆動モデル削減
- Authors: Jan-Hendrik Niemann, Stefan Klus, Christof Sch\"utte
- Abstract要約: Koopman 演算子理論がエージェントベースのシステムの縮小モデルを引き出すのにどのように使用できるかを示す。
我々の目標は粗い粒度のモデルを学び、通常の方程式や微分方程式による減少ダイナミクスを表現することである。
- 参考スコア(独自算出の注目度): 0.3867363075280544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dynamical behavior of social systems can be described by agent-based
models. Although single agents follow easily explainable rules, complex
time-evolving patterns emerge due to their interaction. The simulation and
analysis of such agent-based models, however, is often prohibitively
time-consuming if the number of agents is large. In this paper, we show how
Koopman operator theory can be used to derive reduced models of agent-based
systems using only simulation or real-world data. Our goal is to learn
coarse-grained models and to represent the reduced dynamics by ordinary or
stochastic differential equations. The new variables are, for instance,
aggregated state variables of the agent-based model, modeling the collective
behavior of larger groups or the entire population. Using benchmark problems
with known coarse-grained models, we demonstrate that the obtained reduced
systems are in good agreement with the analytical results, provided that the
numbers of agents is sufficiently large.
- Abstract(参考訳): 社会システムの動的挙動はエージェントベースのモデルによって記述できる。
単一のエージェントは簡単に説明可能な規則に従うが、複雑な時間進化パターンは相互作用によって現れる。
しかし、そのようなエージェントベースのモデルのシミュレーションと分析は、エージェントの数が大きい場合、しばしば時間を要する。
本稿では,シミュレーションや実世界のデータのみを用いてエージェントベースシステムの縮小モデルを導出するために,クープマン演算子理論を用いる方法を示す。
我々の目標は粗い粒度のモデルを学び、通常のあるいは確率的な微分方程式による減少ダイナミクスを表現することである。
新しい変数は、例えばエージェントベースのモデルの集約された状態変数であり、より大きなグループの集団行動や集団全体の振る舞いをモデル化する。
既知粗粒度モデルを用いたベンチマーク問題を用いて, エージェント数が十分に大きい場合, 得られた還元系は解析結果とよく一致していることを示す。
関連論文リスト
- Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
決定論的MoEモデルに基づく最小二乗推定器(LSE)の性能について検討する。
我々は,多種多様な専門家関数の収束挙動を特徴付けるために,強い識別可能性という条件を確立する。
本研究は,専門家の選択に重要な意味を持つ。
論文 参考訳(メタデータ) (2024-02-05T12:31:18Z) - Information theory for data-driven model reduction in physics and biology [0.0]
我々は,関連変数を特定するために,情報ボトルネックに基づく体系的アプローチを開発する。
高圧縮の極限において、関連する変数は、最も遅い遅延固有関数によって直接決定されることを示す。
モデルリダクションを実行する解釈可能なディープラーニングツールを構築するための確固たる基盤を提供する。
論文 参考訳(メタデータ) (2023-12-11T18:39:05Z) - Neural parameter calibration for large-scale multi-agent models [0.7734726150561089]
本稿では,ニューラルネットワークを用いてパラメータの精度の高い確率密度を求める手法を提案する。
2つの組み合わせは、非常に大きなシステムであっても、モデルパラメータの密度を素早く見積もることができる強力なツールを作成する。
論文 参考訳(メタデータ) (2022-09-27T17:36:26Z) - Data-driven Control of Agent-based Models: an Equation/Variable-free
Machine Learning Approach [0.0]
複雑/マルチスケールシステムの集合力学を制御するための方程式/変数自由機械学習(EVFML)フレームワークを提案する。
提案手法は3段階からなる: (A) 高次元エージェントベースシミュレーション、機械学習(特に非線形多様体学習(DM))
創発力学の数値分岐解析を行うために方程式のない手法を用いる。
我々は,エージェントをベースとしたシミュレータを本質的で不正確に知られ,創発的なオープンループ定常状態に駆動する,データ駆動型組込み洗浄制御器を設計する。
論文 参考訳(メタデータ) (2022-07-12T18:16:22Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Validation and Inference of Agent Based Models [0.0]
Agent Based Modelling (ABM) は自律エージェントの動作と相互作用をシミュレーションするための計算フレームワークである。
ABCの最近の研究は、近似確率を計算するためのアルゴリズムをますます効率的にしている。
これらをハミルトンCBDの歩行者モデルを用いて検討・比較した。
論文 参考訳(メタデータ) (2021-07-08T05:53:37Z) - Abstraction of Markov Population Dynamics via Generative Adversarial
Nets [2.1485350418225244]
計算負荷を減らすための戦略は人口モデルを抽象化し、より単純なモデルで置き換えることである。
ここでは、このアイデアを追求し、過去の作品に基づいて、連続した空間と離散時間で軌道を生成できる生成器を構築する。
このジェネレータは、生成逆数設定で元のモデルのシミュレーションから自動的に学習される。
論文 参考訳(メタデータ) (2021-06-24T12:57:49Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
モデルベースエージェントは,サンプル効率と最終報酬の両方の観点から,最先端のモデルフリーエージェントより優れていることを示す。
以上の結果から,モデルに基づく政策評価がより注目に値することが示唆された。
論文 参考訳(メタデータ) (2020-08-28T17:58:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。