論文の概要: Validation and Inference of Agent Based Models
- arxiv url: http://arxiv.org/abs/2107.03619v1
- Date: Thu, 8 Jul 2021 05:53:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-09 20:22:00.817336
- Title: Validation and Inference of Agent Based Models
- Title(参考訳): エージェントベースモデルの検証と推論
- Authors: D. Townsend
- Abstract要約: Agent Based Modelling (ABM) は自律エージェントの動作と相互作用をシミュレーションするための計算フレームワークである。
ABCの最近の研究は、近似確率を計算するためのアルゴリズムをますます効率的にしている。
これらをハミルトンCBDの歩行者モデルを用いて検討・比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Agent Based Modelling (ABM) is a computational framework for simulating the
behaviours and interactions of autonomous agents. As Agent Based Models are
usually representative of complex systems, obtaining a likelihood function of
the model parameters is nearly always intractable. There is a necessity to
conduct inference in a likelihood free context in order to understand the model
output. Approximate Bayesian Computation is a suitable approach for this
inference. It can be applied to an Agent Based Model to both validate the
simulation and infer a set of parameters to describe the model. Recent research
in ABC has yielded increasingly efficient algorithms for calculating the
approximate likelihood. These are investigated and compared using a pedestrian
model in the Hamilton CBD.
- Abstract(参考訳): Agent Based Modelling (ABM) は自律エージェントの動作と相互作用をシミュレーションするための計算フレームワークである。
エージェントベースモデルは通常、複雑なシステムを代表するため、モデルパラメータの確率関数を取得することは、ほぼ常に難解である。
モデル出力を理解するためには、おそらく自由な文脈で推論を行う必要がある。
近似ベイズ計算はこの推論に適した方法である。
エージェントベースモデルに適用することで、シミュレーションの検証とモデルを記述するためのパラメータのセットを推論することができる。
ABCの最近の研究により、近似確率を計算するアルゴリズムがますます効率的になった。
これらをハミルトンCBDの歩行者モデルを用いて検討・比較した。
関連論文リスト
- Predictable MDP Abstraction for Unsupervised Model-Based RL [93.91375268580806]
予測可能なMDP抽象化(PMA)を提案する。
元のMDPで予測モデルを訓練する代わりに、学習されたアクション空間を持つ変換MDPでモデルを訓練する。
我々はPMAを理論的に解析し、PMAが以前の教師なしモデルベースRLアプローチよりも大幅に改善することを示す。
論文 参考訳(メタデータ) (2023-02-08T07:37:51Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
提案アルゴリズムは有限状態隠れマルコフモデルに対する分散ベイズフィルタタスクである。
逐次状態推定や、動的環境下でのソーシャルネットワーク上での意見形成のモデル化に使用できる。
論文 参考訳(メタデータ) (2022-12-05T19:40:17Z) - Model Comparison in Approximate Bayesian Computation [0.456877715768796]
自然科学における一般的な問題は、観測されたデータに照らして競合するモデルの比較である。
この枠組みは、実際に使用されるほとんどのモデルにとって難解な確率関数の計算に依存している。
ABCにおけるベイズモデルの比較を行うための新しい効率的な手法を提案する。
論文 参考訳(メタデータ) (2022-03-15T10:24:16Z) - Low-Rank Constraints for Fast Inference in Structured Models [110.38427965904266]
この研究は、大規模構造化モデルの計算とメモリの複雑さを低減するための単純なアプローチを示す。
言語モデリング,ポリフォニック・ミュージック・モデリング,教師なし文法帰納法,ビデオ・モデリングのためのニューラルパラメータ構造モデルを用いた実験により,我々の手法は大規模状態空間における標準モデルの精度と一致することを示した。
論文 参考訳(メタデータ) (2022-01-08T00:47:50Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - PSD Representations for Effective Probability Models [117.35298398434628]
最近提案された非負関数に対する正半定値(PSD)モデルがこの目的に特に適していることを示す。
我々はPSDモデルの近似と一般化能力の両方を特徴付け、それらが強い理論的保証を享受していることを示す。
本研究では,PSDモデルの密度推定,決定理論,推論への応用への道を開く。
論文 参考訳(メタデータ) (2021-06-30T15:13:39Z) - Lifted Model Checking for Relational MDPs [12.574454799055026]
pCTL-REBELは、リレーショナルMDP上のpCTL特性を検証するためのリフトモデルチェック手法である。
pCTLモデル検査手法は, 無限領域であっても, リレーショナルMDPに対して決定可能であることを示す。
論文 参考訳(メタデータ) (2021-06-22T13:12:36Z) - A bandit-learning approach to multifidelity approximation [7.960229223744695]
マルチファイデリティ近似は、科学計算とシミュレーションにおいて重要な技術である。
異なる忠実度のデータを利用して正確な推定を行うためのバンディットラーニング手法を紹介します。
論文 参考訳(メタデータ) (2021-03-29T05:29:35Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
本稿では,専門的なディープラーニングアーキテクチャを用いたベイズモデルの比較手法を提案する。
提案手法は純粋にシミュレーションベースであり,観測された各データセットに対して,すべての代替モデルを明示的に適合させるステップを回避している。
提案手法は,本研究で検討した事例に対して,精度,キャリブレーション,効率の点で優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-04-22T15:15:46Z) - Asking the Right Questions: Learning Interpretable Action Models Through
Query Answering [33.08099403894141]
本稿では,ブラックボックス型自律エージェントの解釈可能なリレーショナルモデルを設計・動作可能な新しいアプローチを開発する。
我々の主な貢献は、エージェントとの最小クエリインタフェースを用いてそのようなモデルを推定するための新しいパラダイムと、エージェントの内部モデルを推定するための尋問ポリシーを生成する階層的なクエリアルゴリズムである。
論文 参考訳(メタデータ) (2019-12-29T09:05:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。