Non-linear State-space Model Identification from Video Data using Deep
Encoders
- URL: http://arxiv.org/abs/2012.07721v2
- Date: Wed, 28 Apr 2021 08:25:10 GMT
- Title: Non-linear State-space Model Identification from Video Data using Deep
Encoders
- Authors: Gerben Izaak Beintema, Roland Toth and Maarten Schoukens
- Abstract summary: We propose a novel non-linear state-space identification method starting from high-dimensional input and output data.
An encoder function, represented by a neural network, is introduced to learn a reconstructability map to estimate the model states from past inputs and outputs.
We apply the proposed method to a video stream of a simulated environment of a controllable ball in a unit box.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying systems with high-dimensional inputs and outputs, such as systems
measured by video streams, is a challenging problem with numerous applications
in robotics, autonomous vehicles and medical imaging. In this paper, we propose
a novel non-linear state-space identification method starting from
high-dimensional input and output data. Multiple computational and conceptual
advances are combined to handle the high-dimensional nature of the data. An
encoder function, represented by a neural network, is introduced to learn a
reconstructability map to estimate the model states from past inputs and
outputs. This encoder function is jointly learned with the dynamics.
Furthermore, multiple computational improvements, such as an improved
reformulation of multiple shooting and batch optimization, are proposed to keep
the computational time under control when dealing with high-dimensional and
large datasets. We apply the proposed method to a video stream of a simulated
environment of a controllable ball in a unit box. The simulation study shows
low simulation error with excellent long term prediction for the obtained model
using the proposed method.
Related papers
- FMint: Bridging Human Designed and Data Pretrained Models for Differential Equation Foundation Model [5.748690310135373]
We propose a novel multi-modal foundation model, named textbfFMint, to bridge the gap between human-designed and data-driven models.
Built on a decoder-only transformer architecture with in-context learning, FMint utilizes both numerical and textual data to learn a universal error correction scheme.
Our results demonstrate the effectiveness of the proposed model in terms of both accuracy and efficiency compared to classical numerical solvers.
arXiv Detail & Related papers (2024-04-23T02:36:47Z) - Modeling Unknown Stochastic Dynamical System via Autoencoder [3.8769921482808116]
We present a numerical method to learn an accurate predictive model for an unknown dynamical system from its trajectory data.
It employs the idea of autoencoder to identify the unobserved latent random variables.
It is also applicable to systems driven by non-Gaussian noises.
arXiv Detail & Related papers (2023-12-15T18:19:22Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
upcoming exascale era will provide a new generation of physics simulations with high resolution.
These simulations will have a high resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible.
This work presents an approach that trains a neural network concurrently to a running simulation without data on a disk.
arXiv Detail & Related papers (2022-11-09T09:55:14Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - Positional Encoding Augmented GAN for the Assessment of Wind Flow for
Pedestrian Comfort in Urban Areas [0.41998444721319217]
This work rephrases the problem from computing 3D flow fields using CFD to a 2D image-to-image translation-based problem on the building footprints to predict the flow field at pedestrian height level.
We investigate the use of generative adversarial networks (GAN), such as Pix2Pix and CycleGAN representing state-of-the-art for image-to-image translation task in various domains.
arXiv Detail & Related papers (2021-12-15T19:37:11Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Adaptive Machine Learning for Time-Varying Systems: Low Dimensional
Latent Space Tuning [91.3755431537592]
We present a recently developed method of adaptive machine learning for time-varying systems.
Our approach is to map very high (N>100k) dimensional inputs into the low dimensional (N2) latent space at the output of the encoder section of an encoder-decoder CNN.
This method allows us to learn correlations within and to track their evolution in real time based on feedback without interrupts.
arXiv Detail & Related papers (2021-07-13T16:05:28Z) - Data-Driven Shadowgraph Simulation of a 3D Object [50.591267188664666]
We are replacing the numerical code by a computationally cheaper projection based surrogate model.
The model is able to approximate the electric fields at a given time without computing all preceding electric fields as required by numerical methods.
This model has shown a good quality reconstruction in a problem of perturbation of data within a narrow range of simulation parameters and can be used for input data of large size.
arXiv Detail & Related papers (2021-06-01T08:46:04Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Non-intrusive surrogate modeling for parametrized time-dependent PDEs
using convolutional autoencoders [0.0]
We present a non-intrusive surrogate modeling scheme based on machine learning for predictive modeling of complex, systems by parametrized timedependent PDEs.
We use a convolutional autoencoder in conjunction with a feed forward neural network to establish a low-cost and accurate mapping from problem's parametric space to its solution space.
arXiv Detail & Related papers (2021-01-14T11:34:58Z) - Fast Modeling and Understanding Fluid Dynamics Systems with
Encoder-Decoder Networks [0.0]
We show that an accurate deep-learning-based proxy model can be taught efficiently by a finite-volume-based simulator.
Compared to traditional simulation, the proposed deep learning approach enables much faster forward computation.
We quantify the sensitivity of the deep learning model to key physical parameters and hence demonstrate that the inversion problems can be solved with great acceleration.
arXiv Detail & Related papers (2020-06-09T17:14:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.