論文の概要: Analyzing the Performance of Variational Quantum Factoring on a
Superconducting Quantum Processor
- arxiv url: http://arxiv.org/abs/2012.07825v2
- Date: Tue, 9 Mar 2021 20:24:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 21:15:25.419204
- Title: Analyzing the Performance of Variational Quantum Factoring on a
Superconducting Quantum Processor
- Title(参考訳): 超伝導量子プロセッサにおける変分量子ファクタリングの性能解析
- Authors: Amir H. Karamlou, William A. Simon, Amara Katabarwa, Travis L.
Scholten, Borja Peropadre, and Yudong Cao
- Abstract要約: 本稿では,変分量子ファクタリング(VQF)アルゴリズムを実装し,QAOAに基づく量子最適化アルゴリズムについて検討する。
異なるノイズ源がQAOAの性能に与える影響を実証し、キュービット間の残差ZZ結合に起因するコヒーレント誤差を明らかにする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the near-term, hybrid quantum-classical algorithms hold great potential
for outperforming classical approaches. Understanding how these two computing
paradigms work in tandem is critical for identifying areas where such hybrid
algorithms could provide a quantum advantage. In this work, we study a
QAOA-based quantum optimization algorithm by implementing the Variational
Quantum Factoring (VQF) algorithm. We execute experimental demonstrations using
a superconducting quantum processor and investigate the trade-off between
quantum resources (number of qubits and circuit depth) and the probability that
a given biprime is successfully factored. In our experiments, the integers
1099551473989, 3127, and 6557 are factored with 3, 4, and 5 qubits,
respectively, using a QAOA ansatz with up to 8 layers and we are able to
identify the optimal number of circuit layers for a given instance to maximize
success probability. Furthermore, we demonstrate the impact of different noise
sources on the performance of QAOA and reveal the coherent error caused by the
residual ZZ-coupling between qubits as a dominant source of error in the
superconducting quantum processor.
- Abstract(参考訳): 短期的には、ハイブリッド量子古典アルゴリズムは古典的アプローチを上回る大きな可能性を秘めている。
これら2つのコンピューティングパラダイムがどのように機能するかを理解することは、そのようなハイブリッドアルゴリズムが量子的優位性をもたらす領域を特定するために重要である。
本研究では,変分量子ファクタリング(VQF)アルゴリズムを実装し,QAOAに基づく量子最適化アルゴリズムを提案する。
超伝導量子プロセッサを用いて実験実験を行い、量子リソース(量子ビット数と回路深度)と与えられた二素数を分解する確率とのトレードオフを調べる。
実験では,1099551473989,3127,6557を,最大8層までのQAOAアンサッツを用いてそれぞれ3,4,5キュービットに分解し,各インスタンスに対して最適な回路層数を同定し,成功確率を最大化する。
さらに、異なるノイズ源がqaoaの性能に与える影響を実証し、超伝導量子プロセッサにおいて、量子ビット間の残差zz結合によるコヒーレントエラーを支配的エラー源として明らかにする。
関連論文リスト
- Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
我々はこのプロトコルをバイアス場デジタルダイアバティック量子最適化(BF-DCQO)と呼ぶ。
私たちの純粋に量子的なアプローチは、古典的な変分量子アルゴリズムへの依存を排除します。
基底状態の成功確率のスケーリング改善を実現し、最大2桁まで増大する。
論文 参考訳(メタデータ) (2024-05-22T18:11:42Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
一般化誤差が小さい場合でも,量子カーネル法は予測能力に乏しい。
我々は、量子計算にノイズの多い量子カーネル法を用いるために重要な警告を提供する。
論文 参考訳(メタデータ) (2024-01-31T01:02:16Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Calibrating the role of entanglement in variational quantum circuits [0.6435156676256051]
エンタングルメント(Entanglement)は、量子コンピューティングの重要な性質であり、古典的なものとは分離している。
2つの変分量子アルゴリズムの動作における絡み合いの役割を系統的に検討する。
QAOAを用いて解いたMAX-CUT問題に対して,絡み合い関数としての忠実度は層数に大きく依存することがわかった。
QNNの場合、高いテスト精度のトレーニング回路は高い絡み合いによって支えられ、強制的な絡み合いの制限はテスト精度の急激な低下をもたらす。
論文 参考訳(メタデータ) (2023-10-16T23:36:40Z) - Quantum Speedup for Higher-Order Unconstrained Binary Optimization and
MIMO Maximum Likelihood Detection [2.5272389610447856]
実数値の高次非制約二項最適化問題をサポートする量子アルゴリズムを提案する。
提案アルゴリズムは,古典的領域におけるクエリの複雑さを低減し,量子領域における2次高速化を実現する。
論文 参考訳(メタデータ) (2022-05-31T00:14:49Z) - Efficient realization of quantum algorithms with qudits [0.70224924046445]
マルチレベル量子システム(キューディット)を用いた量子アルゴリズムの効率的な実装手法を提案する。
提案手法は,Quditベースのプロセッサのパラメータに依存する標準量子ビット方式の回路のトランスパイレーションを用いる。
特定の普遍集合から取られた単一量子ゲートと2量子ゲートの列に量子回路を変換する明示的なスキームを提供する。
論文 参考訳(メタデータ) (2021-11-08T11:09:37Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Scalable evaluation of quantum-circuit error loss using Clifford
sampling [8.140947383885262]
我々は2次誤差損失と最終状態忠実度損失を用いて量子回路を特徴づける。
これらの損失関数は、クリフォード支配回路からのサンプリングにより、スケーラブルな方法で効率的に評価できることが示されている。
この結果から,中間規模量子状態における最適化型量子デバイスとアルゴリズム設計への道を開いた。
論文 参考訳(メタデータ) (2020-07-20T11:51:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。