Learning to Check Contract Inconsistencies
- URL: http://arxiv.org/abs/2012.08150v1
- Date: Tue, 15 Dec 2020 08:43:07 GMT
- Title: Learning to Check Contract Inconsistencies
- Authors: Shuo Zhang, Junzhou Zhao, Pinghui Wang, Nuo Xu, Yang Yang, Yiting Liu,
Yi Huang, Junlan Feng
- Abstract summary: In many scenarios, a contract is written by filling the blanks in a precompiled form.
Due to carelessness, two blanks that should be filled with the same (or different)content may be incorrectly filled with different (or same) content.
In this work, we formulate a novel Contract Inconsistency Checking (CIC) problem, and design an end-to-end framework, called Pair-wise Blank Resolution (PBR)
Our PBR model contains a novel BlankCoder to address the challenge of modeling meaningless blanks.
- Score: 26.4596456440168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contract consistency is important in ensuring the legal validity of the
contract. In many scenarios, a contract is written by filling the blanks in a
precompiled form. Due to carelessness, two blanks that should be filled with
the same (or different)content may be incorrectly filled with different (or
same) content. This will result in the issue of contract inconsistencies, which
may severely impair the legal validity of the contract. Traditional methods to
address this issue mainly rely on manual contract review, which is
labor-intensive and costly. In this work, we formulate a novel Contract
Inconsistency Checking (CIC) problem, and design an end-to-end framework,
called Pair-wise Blank Resolution (PBR), to solve the CIC problem with high
accuracy. Our PBR model contains a novel BlankCoder to address the challenge of
modeling meaningless blanks. BlankCoder adopts a two-stage attention mechanism
that adequately associates a meaningless blank with its relevant descriptions
while avoiding the incorporation of irrelevant context words. Experiments
conducted on real-world datasets show the promising performance of our method
with a balanced accuracy of 94.05% and an F1 score of 90.90% in the CIC
problem.
Related papers
- Localizing Factual Inconsistencies in Attributable Text Generation [91.981439746404]
We introduce QASemConsistency, a new formalism for localizing factual inconsistencies in attributable text generation.
We first demonstrate the effectiveness of the QASemConsistency methodology for human annotation.
We then implement several methods for automatically detecting localized factual inconsistencies.
arXiv Detail & Related papers (2024-10-09T22:53:48Z) - SparseCL: Sparse Contrastive Learning for Contradiction Retrieval [87.02936971689817]
Contradiction retrieval refers to identifying and extracting documents that explicitly disagree with or refute the content of a query.
Existing methods such as similarity search and crossencoder models exhibit significant limitations.
We introduce SparseCL that leverages specially trained sentence embeddings designed to preserve subtle, contradictory nuances between sentences.
arXiv Detail & Related papers (2024-06-15T21:57:03Z) - Improving Smart Contract Security with Contrastive Learning-based Vulnerability Detection [8.121484960948303]
We propose Contrastive Learning Enhanced Automated Recognition Approach for Smart Contract Vulnerabilities, named Clear.
In particular, Clear employs a contrastive learning (CL) model to capture the fine-grained correlation information among contracts.
We show that Clear achieves optimal performance over all baseline methods; (2) 9.73%-39.99% higher F1-score than existing deep learning methods.
arXiv Detail & Related papers (2024-04-27T09:13:25Z) - Towards Mitigating Perceived Unfairness in Contracts from a Non-Legal
Stakeholder's Perspective [2.9748898344267776]
We conduct an empirical study to analyze the perspectives of different stakeholders regarding contractual fairness.
We then investigate the ability of Pre-trained Language Models (PLMs) to identify unfairness in contractual sentences.
arXiv Detail & Related papers (2023-12-03T13:52:32Z) - Two Timin': Repairing Smart Contracts With A Two-Layered Approach [3.2154249558826846]
This paper proposes a novel, two-layered framework for classifying and repairing smart contracts.
Slither's vulnerability report is combined with source code and passed through a pre-trained RandomForestClassifier (RFC) and Large Language Models (LLMs)
Experiments demonstrate the effectiveness of fine-tuned and prompt-engineered LLMs.
arXiv Detail & Related papers (2023-09-14T16:37:23Z) - CTC-based Non-autoregressive Speech Translation [51.37920141751813]
We investigate the potential of connectionist temporal classification for non-autoregressive speech translation.
We develop a model consisting of two encoders that are guided by CTC to predict the source and target texts.
Experiments on the MuST-C benchmarks show that our NAST model achieves an average BLEU score of 29.5 with a speed-up of 5.67$times$.
arXiv Detail & Related papers (2023-05-27T03:54:09Z) - Improving Factual Consistency in Summarization with Compression-Based
Post-Editing [146.24839415743358]
We show that a model-agnostic way to address this problem is post-editing the generated summaries.
We propose to use sentence-compression data to train the post-editing model to take a summary with extrinsic entity errors marked with special tokens.
We show that this model improves factual consistency while maintaining ROUGE, improving entity precision by up to 30% on XSum, and that this model can be applied on top of another post-editor.
arXiv Detail & Related papers (2022-11-11T13:35:38Z) - ConReader: Exploring Implicit Relations in Contracts for Contract Clause
Extraction [84.0634340572349]
We study automatic Contract Clause Extraction (CCE) by modeling implicit relations in legal contracts.
In this work, we first comprehensively analyze the complexity issues of contracts and distill out three implicit relations commonly found in contracts.
We propose a novel framework ConReader to exploit the above three relations for better contract understanding and improving CCE.
arXiv Detail & Related papers (2022-10-17T02:15:18Z) - Detecting Logical Relation In Contract Clauses [94.85352502638081]
We develop an approach to automate the extraction of logical relations between clauses in a contract.
The resulting approach should help contract authors detecting potential logical conflicts between clauses.
arXiv Detail & Related papers (2021-11-02T19:26:32Z) - ContractNLI: A Dataset for Document-level Natural Language Inference for
Contracts [39.75232199445175]
We propose "document-level natural language inference (NLI) for contracts"
A system is given a set of hypotheses and a contract, and it is asked to classify whether each hypothesis is "entailed by", "contradicting to" or "not mentioned by" (neutral to) the contract.
We release the largest corpus to date consisting of 607 annotated contracts.
arXiv Detail & Related papers (2021-10-05T03:22:31Z) - Clustering-based Automatic Construction of Legal Entity Knowledge Base
from Contracts [0.0]
We propose a clustering-based approach to automatically generate a reliable knowledge base of legal entities from given contracts.
The proposed method is robust to different types of errors brought by pre-processing such as OCR and NER.
Compared to the collected ground-truth data, our method is able to recall 84% of the knowledge.
arXiv Detail & Related papers (2020-11-18T17:51:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.