Grounding Artificial Intelligence in the Origins of Human Behavior
- URL: http://arxiv.org/abs/2012.08564v2
- Date: Thu, 17 Dec 2020 14:07:50 GMT
- Title: Grounding Artificial Intelligence in the Origins of Human Behavior
- Authors: Eleni Nisioti and Cl\'ement Moulin-Frier
- Abstract summary: Recent advances in Artificial Intelligence (AI) have revived the quest for agents able to acquire an open-ended repertoire of skills.
Research in Human Behavioral Ecology (HBE) seeks to understand how the behaviors characterizing human nature can be conceived as adaptive responses to major changes in the structure of our ecological niche.
We propose a framework highlighting the role of environmental complexity in open-ended skill acquisition, grounded in major hypotheses from HBE and recent contributions in Reinforcement learning (RL)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in Artificial Intelligence (AI) have revived the quest for
agents able to acquire an open-ended repertoire of skills. However, although
this ability is fundamentally related to the characteristics of human
intelligence, research in this field rarely considers the processes that may
have guided the emergence of complex cognitive capacities during the evolution
of the species.
Research in Human Behavioral Ecology (HBE) seeks to understand how the
behaviors characterizing human nature can be conceived as adaptive responses to
major changes in the structure of our ecological niche. In this paper, we
propose a framework highlighting the role of environmental complexity in
open-ended skill acquisition, grounded in major hypotheses from HBE and recent
contributions in Reinforcement learning (RL). We use this framework to
highlight fundamental links between the two disciplines, as well as to identify
feedback loops that bootstrap ecological complexity and create promising
research directions for AI researchers.
Related papers
- Artificial Human Intelligence: The role of Humans in the Development of Next Generation AI [6.8894258727040665]
We explore the interplay between human and machine intelligence, focusing on the crucial role humans play in developing ethical, responsible, and robust intelligent systems.
We propose future perspectives, capitalizing on the advantages of symbiotic designs to suggest a human-centered direction for next-generation AI development.
arXiv Detail & Related papers (2024-09-24T12:02:20Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
We introduce the symmetrical reality framework, which offers a unified representation encompassing various forms of physical-virtual amalgamations.
We propose an instance of an AI-driven active assistance service that illustrates the potential applications of symmetrical reality.
arXiv Detail & Related papers (2024-01-26T16:09:39Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Advancing Perception in Artificial Intelligence through Principles of
Cognitive Science [6.637438611344584]
We focus on the cognitive functions of perception, which is the process of taking signals from one's surroundings as input, and processing them to understand the environment.
We present a collection of methods in AI for researchers to build AI systems inspired by cognitive science.
arXiv Detail & Related papers (2023-10-13T01:21:55Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AI is a process in which humans and AI algorithms continuously influence each other.
This paper introduces Coevolution AI as the cornerstone for a new field of study at the intersection between AI and complexity science.
arXiv Detail & Related papers (2023-06-23T18:10:54Z) - Towards the Neuroevolution of Low-level Artificial General Intelligence [5.2611228017034435]
We argue that the search for Artificial General Intelligence (AGI) should start from a much lower level than human-level intelligence.
Our hypothesis is that learning occurs through sensory feedback when an agent acts in an environment.
We evaluate a method to evolve a biologically-inspired artificial neural network that learns from environment reactions.
arXiv Detail & Related papers (2022-07-27T15:30:50Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
Psychological curiosity plays a significant role in human intelligence to enhance learning through exploration and information acquisition.
In the Artificial Intelligence (AI) community, artificial curiosity provides a natural intrinsic motivation for efficient learning.
CDL has become increasingly popular, where agents are self-motivated to learn novel knowledge.
arXiv Detail & Related papers (2022-01-20T17:07:03Z) - Intelligent behavior depends on the ecological niche: Scaling up AI to
human-like intelligence in socio-cultural environments [17.238068736229017]
This paper outlines a perspective on the future of AI, discussing directions for machines models of human-like intelligence.
We emphasize the role of ecological niches in sculpting intelligent behavior, and in particular that human intelligence was fundamentally shaped to adapt to a constantly changing socio-cultural environment.
arXiv Detail & Related papers (2021-03-11T16:24:00Z) - Embodied Intelligence via Learning and Evolution [92.26791530545479]
We show that environmental complexity fosters the evolution of morphological intelligence.
We also show that evolution rapidly selects morphologies that learn faster.
Our experiments suggest a mechanistic basis for both the Baldwin effect and the emergence of morphological intelligence.
arXiv Detail & Related papers (2021-02-03T18:58:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.