論文の概要: Multi-Modal Anomaly Detection for Unstructured and Uncertain
Environments
- arxiv url: http://arxiv.org/abs/2012.08637v1
- Date: Tue, 15 Dec 2020 21:59:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-07 05:31:41.533036
- Title: Multi-Modal Anomaly Detection for Unstructured and Uncertain
Environments
- Title(参考訳): 非構造・不確実な環境に対するマルチモーダル異常検出
- Authors: Tianchen Ji, Sri Theja Vuppala, Girish Chowdhary, Katherine
Driggs-Campbell
- Abstract要約: 現代のロボットは、最小限の人間の監督で異常や故障を検出して回復する能力を必要とします。
本稿では,非構造的かつ不確実な環境での障害識別のための教師付き変分オートエンコーダ(SVAE)を提案する。
実地ロボットデータを用いた実験では,ベースライン法よりも障害同定性能が優れており,解釈可能な表現を学習できる。
- 参考スコア(独自算出の注目度): 5.677685109155077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To achieve high-levels of autonomy, modern robots require the ability to
detect and recover from anomalies and failures with minimal human supervision.
Multi-modal sensor signals could provide more information for such anomaly
detection tasks; however, the fusion of high-dimensional and heterogeneous
sensor modalities remains a challenging problem. We propose a deep learning
neural network: supervised variational autoencoder (SVAE), for failure
identification in unstructured and uncertain environments. Our model leverages
the representational power of VAE to extract robust features from
high-dimensional inputs for supervised learning tasks. The training objective
unifies the generative model and the discriminative model, thus making the
learning a one-stage procedure. Our experiments on real field robot data
demonstrate superior failure identification performance than baseline methods,
and that our model learns interpretable representations. Videos of our results
are available on our website:
https://sites.google.com/illinois.edu/supervised-vae .
- Abstract(参考訳): 高度な自律性を実現するために、現代のロボットは、最小限の人間の監督で異常や障害を検出して回復する能力を必要としている。
マルチモーダルセンサ信号はそのような異常検出タスクにより多くの情報を提供することができるが、高次元および不均一なセンサモーダルの融合は依然として困難な問題である。
本稿では,非構造的かつ不確実な環境での障害識別のための教師付き変分オートエンコーダ(SVAE)を提案する。
我々のモデルはVAEの表現力を利用して、教師付き学習タスクのための高次元入力から堅牢な特徴を抽出する。
学習目的は生成モデルと識別モデルを統合することにより,学習を1段階の手順とする。
実地ロボットデータを用いた実験は,ベースライン法よりも優れた故障識別性能を示し,解釈可能な表現を学習する。
結果のビデオは、弊社のwebサイト(https://sites.google.com/illinois.edu/supervised-vae.com)から入手できます。
関連論文リスト
- Unsupervised Model Diagnosis [49.36194740479798]
本稿では,ユーザガイドを使わずに,意味論的対実的説明を生成するために,Unsupervised Model Diagnosis (UMO)を提案する。
提案手法は意味論における変化を特定し可視化し,その変化を広範囲なテキストソースの属性と照合する。
論文 参考訳(メタデータ) (2024-10-08T17:59:03Z) - Vision-Language Models Assisted Unsupervised Video Anomaly Detection [3.1095294567873606]
異常サンプルは教師なし学習手法における重要な課題を示す。
提案手法では,大規模言語モデルの推論能力を活用したモーダル事前学習モデルを用いる。
本手法は,高次元視覚特徴を低次元意味的特徴にマッピングすることにより,教師なし異常検出の解釈可能性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-09-21T11:48:54Z) - Complementary Learning for Real-World Model Failure Detection [15.779651238128562]
そこでは、異なる訓練パラダイムから学習特性を用いてモデルエラーを検出する。
我々は,制御的かつ自己管理的な方法で,点群における意味的および予測的動作ラベルを学習することにより,我々のアプローチを実証する。
大規模定性解析を行い、ライダー点雲にラベル付き異常を持つ最初のデータセットであるLidarCODAを提示する。
論文 参考訳(メタデータ) (2024-07-19T13:36:35Z) - ADT: Agent-based Dynamic Thresholding for Anomaly Detection [4.356615197661274]
本稿では,エージェントベースの動的しきい値処理(ADT)フレームワークを提案する。
本研究では,自動エンコーダを用いて特徴表現を取得し,複雑な入力データに対する異常スコアを生成する。
ADTはオートエンコーダの異常スコアを利用して閾値を適応的に調整することができる。
論文 参考訳(メタデータ) (2023-12-03T19:07:30Z) - URLOST: Unsupervised Representation Learning without Stationarity or
Topology [26.17135629579595]
定常性やトポロジに欠ける高次元データから学習する新しいフレームワークを提案する。
我々のモデルは学習可能な自己組織化層、密度調整されたスペクトルクラスタリング、マスク付きオートエンコーダを組み合わせる。
本研究は,生体視覚データ,一次視覚野からの神経記録,遺伝子発現データセットにおいて有効性を評価する。
論文 参考訳(メタデータ) (2023-10-06T18:00:02Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
移動ロボットの視覚異常検出システム構築の問題点を考察する。
標準異常検出モデルは、非異常データのみからなる大規模なデータセットを用いて訓練される。
本研究では,これらのデータを利用してリアルNVP異常検出モデルの性能向上を図る。
論文 参考訳(メタデータ) (2022-09-20T15:18:13Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
自律運転システムには2つの主要なアルゴリズムアプローチがある。
ディープラーニングだけでは、多くの分野で最先端の結果が得られています。
しかし、ディープラーニングモデルが機能しない場合、デバッグが非常に難しい場合もあります。
論文 参考訳(メタデータ) (2022-03-28T20:29:50Z) - Video Anomaly Detection Using Pre-Trained Deep Convolutional Neural Nets
and Context Mining [2.0646127669654835]
本稿では,事前学習した畳み込みニューラルネットモデルを用いて特徴抽出とコンテキストマイニングを行う方法について述べる。
我々は,高レベルの特徴から文脈特性を導出し,ビデオ異常検出法の性能をさらに向上させる。
論文 参考訳(メタデータ) (2020-10-06T00:26:14Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
外乱検出は重要なデータマイニングの課題であり、多くの実用的応用がある。
本稿では,最適なニューラルネットワークモデルを探すことを目的とした自動外乱検出フレームワークであるAutoODを提案する。
さまざまな実世界のベンチマークデータセットに対する実験結果から、AutoODが特定したディープモデルが最高のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2020-06-19T18:57:51Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。