論文の概要: Unsupervised Learning of Discourse Structures using a Tree Autoencoder
- arxiv url: http://arxiv.org/abs/2012.09446v1
- Date: Thu, 17 Dec 2020 08:40:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-02 19:19:40.685113
- Title: Unsupervised Learning of Discourse Structures using a Tree Autoencoder
- Title(参考訳): 樹木オートエンコーダを用いた談話構造の教師なし学習
- Authors: Patrick Huber and Giuseppe Carenini
- Abstract要約: 本研究では, 自動符号化目的による潜在木誘導フレームワークを拡張することにより, タスクに依存しない, 監視されていない方法で木構造を生成する新しい戦略を提案する。
提案されたアプローチは、構文解析、談話解析など、任意のツリー目的に適用することができる。
本稿では,複数の領域における自然文の一般的な木構造を推定し,様々なタスクで有望な結果を示す。
- 参考スコア(独自算出の注目度): 8.005512864082126
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discourse information, as postulated by popular discourse theories, such as
RST and PDTB, has been shown to improve an increasing number of downstream NLP
tasks, showing positive effects and synergies of discourse with important
real-world applications. While methods for incorporating discourse become more
and more sophisticated, the growing need for robust and general discourse
structures has not been sufficiently met by current discourse parsers, usually
trained on small scale datasets in a strictly limited number of domains. This
makes the prediction for arbitrary tasks noisy and unreliable. The overall
resulting lack of high-quality, high-quantity discourse trees poses a severe
limitation to further progress. In order the alleviate this shortcoming, we
propose a new strategy to generate tree structures in a task-agnostic,
unsupervised fashion by extending a latent tree induction framework with an
auto-encoding objective. The proposed approach can be applied to any
tree-structured objective, such as syntactic parsing, discourse parsing and
others. However, due to the especially difficult annotation process to generate
discourse trees, we initially develop a method to generate larger and more
diverse discourse treebanks. In this paper we are inferring general tree
structures of natural text in multiple domains, showing promising results on a
diverse set of tasks.
- Abstract(参考訳): RSTやPDTBのような一般的な談話理論によって仮定された談話情報は、下流のNLPタスクの増加を改善し、重要な現実世界の応用と対話の肯定的な効果と相乗効果を示すことが示されている。
言論を取り入れる手法はますます洗練されていくが、強固で一般的な言論構造の必要性は、通常、厳密な数のドメインで小さなデータセットで訓練された現在の言論パーサーによって十分に満たされていない。
これにより、任意のタスクの予測がうるさいし、信頼できない。
結果として生じる、高品質で高品質な談話ツリーの欠如は、さらなる進歩に深刻な制限をもたらす。
この欠点を解消するために,潜在木誘導フレームワークを自動エンコーディング目的に拡張することにより,タスクに依存しない教師なし方式で木構造を生成する新しい手法を提案する。
提案手法は,構文解析,談話解析などの木構造的目的に適用可能である。
しかし,談話木を生成するのに特に難しいアノテーションプロセスのため,まず,より大きく多様な談話木バンクを生成する方法を開発した。
本稿では,複数の領域における自然文の一般的な木構造を推定し,様々なタスクで有望な結果を示す。
関連論文リスト
- Entailment Tree Explanations via Iterative Retrieval-Generation Reasoner [56.08919422452905]
我々はIRGR(Iterative Retrieval-Generation Reasoner)と呼ばれるアーキテクチャを提案する。
本モデルでは,テキストの前提からステップバイステップの説明を体系的に生成することにより,与えられた仮説を説明することができる。
前提条件の検索と細分化木の生成に関する既存のベンチマークを上回り、全体の正しさはおよそ300%向上した。
論文 参考訳(メタデータ) (2022-05-18T21:52:11Z) - TreeMix: Compositional Constituency-based Data Augmentation for Natural
Language Understanding [56.794981024301094]
自然言語理解のための合成データ拡張手法であるTreeMixを提案する。
具体的には、TreeMixは、選択構文解析木を利用して、文章を構成要素のサブ構造に分解し、ミックスアップデータ拡張技術を使って、それらを再結合して新しい文を生成する。
従来のアプローチと比較して、TreeMixは生成されたサンプルにより多様性を導入し、NLPデータの合成性を学ぶようモデルに促している。
論文 参考訳(メタデータ) (2022-05-12T15:25:12Z) - Incorporating Constituent Syntax for Coreference Resolution [50.71868417008133]
本稿では,構成構文構造をグラフベースで組み込む手法を提案する。
また、高次近傍情報を利用して構成木に富んだ構造をエンコードすることも検討する。
on the English and Chinese parts of OntoNotes 5.0 benchmark shows that our proposed model beats a strong baseline or a new-of-the-art performance。
論文 参考訳(メタデータ) (2022-02-22T07:40:42Z) - Predicting Above-Sentence Discourse Structure using Distant Supervision
from Topic Segmentation [8.688675709130289]
RSTスタイルの談話解析は多くのNLPタスクにおいて重要な役割を担っている。
その重要性にもかかわらず、現代の談話解析における最も一般的な制限の1つは、大規模なデータセットの欠如である。
論文 参考訳(メタデータ) (2021-12-12T10:16:45Z) - Neural Abstructions: Abstractions that Support Construction for Grounded
Language Learning [69.1137074774244]
言語の相互作用を効果的に活用するには、言語基底に対する2つの最も一般的なアプローチの制限に対処する必要がある。
本稿では,ラベル条件付き生成モデルの推論手順に対する制約のセットであるニューラル・アブストラクションの考え方を紹介する。
この手法により,マインクラフトにおけるオープンエンドハウスタスクのセマンティックな変更をユーザ人口が構築できることが示される。
論文 参考訳(メタデータ) (2021-07-20T07:01:15Z) - Long Text Generation by Modeling Sentence-Level and Discourse-Level
Coherence [59.51720326054546]
本稿では,デコード処理における文レベルと談話レベルにおけるプレフィックス文を表現可能な長文生成モデルを提案する。
我々のモデルは最先端のベースラインよりも一貫性のあるテキストを生成することができる。
論文 参考訳(メタデータ) (2021-05-19T07:29:08Z) - Unsupervised Learning of Explainable Parse Trees for Improved
Generalisation [15.576061447736057]
より有意義で説明しやすい解析木構造を学ぶために、Tree-LSTMよりも注意メカニズムを提案します。
また,提案モデルの自然言語推論,意味的関連性,感情分析タスクにおける優れた性能を示す。
論文 参考訳(メタデータ) (2021-04-11T12:10:03Z) - Randomized Deep Structured Prediction for Discourse-Level Processing [45.725437752821655]
近年,表現型テキストエンコーダがNLPモデルの中心となっている。
複雑な議論構造を含むタスク群に対して,深層構造予測と表現型ニューラルネットワークエンコーダを効率的に活用できることを示す。
論文 参考訳(メタデータ) (2021-01-25T21:49:32Z) - An End-to-End Document-Level Neural Discourse Parser Exploiting
Multi-Granularity Representations [24.986030179701405]
構文とセマンティクスにまたがる複数のレベルの粒度から派生した堅牢な表現を利用します。
このような表現をエンドツーエンドのエンコーダデコーダニューラルアーキテクチャに組み込んで、よりリソース豊富な対話処理を行います。
論文 参考訳(メタデータ) (2020-12-21T08:01:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。