Dynamically Reconfigurable Photon Exchange in a Superconducting Quantum
Processor
- URL: http://arxiv.org/abs/2303.03507v1
- Date: Mon, 6 Mar 2023 21:28:48 GMT
- Title: Dynamically Reconfigurable Photon Exchange in a Superconducting Quantum
Processor
- Authors: Brian Marinelli, Jie Luo, Hengjiang Ren, Bethany M. Niedzielski, David
K. Kim, Rabindra Das, Mollie Schwartz, David I. Santiago, and Irfan Siddiqi
- Abstract summary: Large-scale quantum computation faces the challenge of efficiently generating entanglement between many qubits.
Here we propose and demonstrate a novel, on-chip photon exchange network.
We show long-range qubit-qubit interactions between qubits with a maximum spatial separation of $9.2textcm$ along a meandered bus resonator.
- Score: 1.0614955682118588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Realizing the advantages of quantum computation requires access to the full
Hilbert space of states of many quantum bits (qubits). Thus, large-scale
quantum computation faces the challenge of efficiently generating entanglement
between many qubits. In systems with a limited number of direct connections
between qubits, entanglement between non-nearest neighbor qubits is generated
by a series of nearest neighbor gates, which exponentially suppresses the
resulting fidelity. Here we propose and demonstrate a novel, on-chip photon
exchange network. This photonic network is embedded in a superconducting
quantum processor (QPU) to implement an arbitrarily reconfigurable qubit
connectivity graph. We show long-range qubit-qubit interactions between qubits
with a maximum spatial separation of $9.2~\text{cm}$ along a meandered bus
resonator and achieve photon exchange rates up to $g_{\text{qq}} = 2\pi \times
0.9~\text{MHz}$. These experimental demonstrations provide a foundation to
realize highly connected, reconfigurable quantum photonic networks and opens a
new path towards modular quantum computing.
Related papers
- A quantum-network register assembled with optical tweezers in an optical cavity [0.0]
Quantum computation and quantum communication are expected to provide users with capabilities inaccessible by classical physics.
One solution is to develop a quantum network consisting of small-scale quantum registers containing computation qubits.
We report on a register that uses both optical tweezers and optical lattices to deterministically assemble a two-dimensional array of atoms in an optical cavity.
arXiv Detail & Related papers (2024-07-12T09:20:57Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Distributed quantum computing with photons and atomic memories [0.0]
We propose a universal distributed quantum computing scheme based on photons and atomic-ensemble-based quantum memories.
Taking the established photonic advantages, we mediate two-qubit nonlinear interaction by converting photonic qubits into quantum memory states.
Our results show photon-atom network hybrid approach can be an alternative solution to universal quantum computing.
arXiv Detail & Related papers (2022-07-05T22:52:33Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
We present a quantum memory engineered to meet real-world deployment and scaling challenges.
The memory technology utilizes a warm rubidium vapor as the storage medium, and operates at room temperature.
We demonstrate performance specifications of high-fidelity retrieval (95%) and low operation error $(10-2)$ at a storage time of 160 $mu s$ for single-photon level quantum memory operations.
arXiv Detail & Related papers (2022-05-26T00:33:13Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Multiplexed telecom-band quantum networking with atom arrays in optical
cavities [0.3499870393443268]
We propose a platform for quantum processors comprising neutral atom arrays with telecom-band photons in a multiplexed network architecture.
The use of a large atom array instead of a single atom mitigates the deleterious effects of two-way communication and improves the entanglement rate between two nodes by nearly two orders of magnitude.
arXiv Detail & Related papers (2021-07-09T15:05:57Z) - A Quantum-Logic Gate between Distant Quantum-Network Modules [2.810625954925815]
Quantum networks promise a solution by integrating smaller qubit modules to a larger computing cluster.
Here we experimentally realize such a gate over a distance of 60m.
Our non-local quantum-logic gate could be extended both to multiple qubits and many modules for a tailor-made multi-qubit computing register.
arXiv Detail & Related papers (2021-03-24T11:13:44Z) - Interleaving: Modular architectures for fault-tolerant photonic quantum
computing [50.591267188664666]
Photonic fusion-based quantum computing (FBQC) uses low-loss photonic delays.
We present a modular architecture for FBQC in which these components are combined to form "interleaving modules"
Exploiting the multiplicative power of delays, each module can add thousands of physical qubits to the computational Hilbert space.
arXiv Detail & Related papers (2021-03-15T18:00:06Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - A network-ready random-access qubits memory [0.0]
Photonic qubits memories are essential ingredients of numerous quantum networking protocols.
We demonstrate a random-access multi-qubit write-read memory for photons using two rubidium atoms coupled to the same mode of an optical cavity.
The combined write-read efficiency is 26% and the coherence time approaches 1ms.
arXiv Detail & Related papers (2020-11-02T08:23:01Z) - Generating Spatially Entangled Itinerant Photons with Waveguide Quantum
Electrodynamics [43.53795072498062]
In this work, we demonstrate the deterministic generation of such photons using superconducting transmon qubits that are directly coupled to a waveguide.
We generate two-photon N00N states and show that the state and spatial entanglement of the emitted photons are tunable via the qubit frequencies.
arXiv Detail & Related papers (2020-03-16T16:03:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.