論文の概要: A fully pipelined FPGA accelerator for scale invariant feature transform
keypoint descriptor matching,
- arxiv url: http://arxiv.org/abs/2012.09666v1
- Date: Thu, 17 Dec 2020 15:29:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-02 07:16:46.503399
- Title: A fully pipelined FPGA accelerator for scale invariant feature transform
keypoint descriptor matching,
- Title(参考訳): スケール不変な特徴変換キーポイント記述子マッチングのための完全パイプラインFPGAアクセラレータ
- Authors: Luka Daoud, Muhammad Kamran Latif, H S. Jacinto, Nader Rafla
- Abstract要約: SIFTキーポイント記述子マッチングのための完全パイプラインハードウェアアクセラレータアーキテクチャを設計する。
提案するハードウェアアーキテクチャは、完全にパイプライン化された実装に必要なメモリ帯域を適切に処理することができる。
私たちのハードウェア実装は、同等のソフトウェアアプローチの15.7倍高速です。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The scale invariant feature transform (SIFT) algorithm is considered a
classical feature extraction algorithm within the field of computer vision.
SIFT keypoint descriptor matching is a computationally intensive process due to
the amount of data consumed. In this work, we designed a novel fully pipelined
hardware accelerator architecture for SIFT keypoint descriptor matching. The
accelerator core was implemented and tested on a field programmable gate array
(FPGA). The proposed hardware architecture is able to properly handle the
memory bandwidth necessary for a fully-pipelined implementation and hits the
roofline performance model, achieving the potential maximum throughput. The
fully pipelined matching architecture was designed based on the consine angle
distance method. Our architecture was optimized for 16-bit fixed-point
operations and implemented on hardware using a Xilinx Zynq-based FPGA
development board. Our proposed architecture shows a noticeable reduction of
area resources compared with its counterparts in literature, while maintaining
high throughput by alleviating memory bandwidth restrictions. The results show
a reduction in consumed device resources of up to 91 percent in LUTs and 79
percent of BRAMs. Our hardware implementation is 15.7 times faster than the
comparable software approach.
- Abstract(参考訳): スケール不変特徴変換(SIFT)アルゴリズムはコンピュータビジョンの分野における古典的特徴抽出アルゴリズムであると考えられている。
siftのキーポイント記述子マッチングは、消費されるデータ量による計算集約的なプロセスである。
本研究では,SIFTキーポイント記述子マッチングのための完全パイプライン型ハードウェアアクセラレータアーキテクチャを設計した。
加速器コアはfield programmable gate array (fpga) で実装・テストされた。
提案するハードウェアアーキテクチャは,完全な実装に必要なメモリ帯域幅を適切に処理し,屋上性能モデルに到達し,潜在的な最大スループットを実現する。
完全なパイプラインマッチングアーキテクチャは、共振角距離法に基づいて設計されている。
アーキテクチャは16ビットの固定点演算に最適化され,Xilinx ZynqベースのFPGA開発ボードを用いてハードウェア上に実装された。
提案アーキテクチャは,メモリ帯域幅制限を緩和し,高いスループットを維持しつつ,文学的手法と比較して,領域資源の顕著な削減を示す。
その結果、使用済みデバイスリソースの最大91%がLUTで、99%がBRAMで削減された。
私たちのハードウェア実装は、同等のソフトウェアアプローチの15.7倍高速です。
関連論文リスト
- Quasar-ViT: Hardware-Oriented Quantization-Aware Architecture Search for Vision Transformers [56.37495946212932]
視覚変換器(ViT)は、畳み込みニューラルネットワーク(CNN)と比較して、コンピュータビジョンタスクにおいて優れた精度を示す。
ハードウェア指向の量子化対応アーキテクチャ検索フレームワークであるQuasar-ViTを提案する。
論文 参考訳(メタデータ) (2024-07-25T16:35:46Z) - Understanding the Potential of FPGA-Based Spatial Acceleration for Large Language Model Inference [11.614722231006695]
数十億のパラメータを誇った大規模言語モデル(LLM)は、推論ワークロードの効率的なデプロイに対する大きな需要を生み出している。
本稿では,FPGA上でのLLM推論におけるモデル固有空間加速度の実現可能性と可能性について検討する。
論文 参考訳(メタデータ) (2023-12-23T04:27:06Z) - FPGA-QHAR: Throughput-Optimized for Quantized Human Action Recognition
on The Edge [0.6254873489691849]
本稿では,8ビット量子化された2ストリームSimpleNet-PyTorch CNNアーキテクチャに基づく,エンドツーエンドHAR拡張型HW/SWアクセラレータの共設計を提案する。
私たちの開発では、部分的にストリーミングデータフローアーキテクチャを使用して、ネットワーク設計やリソース利用のトレードオフよりも高いスループットを実現しています。
提案手法は,ZCU104上の187MHzで約24FPSのリアルタイム推論スループットを用いて,約81%の予測精度を達成した。
論文 参考訳(メタデータ) (2023-11-04T10:38:21Z) - INR-Arch: A Dataflow Architecture and Compiler for Arbitrary-Order
Gradient Computations in Implicit Neural Representation Processing [66.00729477511219]
計算グラフとして表される関数を考えると、従来のアーキテクチャはn階勾配を効率的に計算する上で困難に直面している。
InR-Archは,n階勾配の計算グラフをハードウェア最適化データフローアーキテクチャに変換するフレームワークである。
1.8-4.8x と 1.5-3.6x の高速化を CPU と GPU のベースラインと比較した結果を示す。
論文 参考訳(メタデータ) (2023-08-11T04:24:39Z) - DeepGEMM: Accelerated Ultra Low-Precision Inference on CPU Architectures
using Lookup Tables [49.965024476651706]
DeepGEMMはSIMDハードウェア上で超高精度畳み込みニューラルネットワークを実行するためのルックアップテーブルベースのアプローチである。
実装は、x86プラットフォーム上で、対応する8ビット整数カーネルを最大1.74倍の性能で上回る。
論文 参考訳(メタデータ) (2023-04-18T15:13:10Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and
Algorithm Co-design [66.39546326221176]
多くのAIタスクにおいて、注意に基づくニューラルネットワークが普及している。
注意機構とフィードフォワードネットワーク(FFN)の使用は、過剰な計算とメモリ資源を必要とする。
本稿では,注目機構とFFNの両方を近似するために,バタフライの分散パターンを統一したハードウェアフレンドリーな変種を提案する。
論文 参考訳(メタデータ) (2022-09-20T09:28:26Z) - A Length Adaptive Algorithm-Hardware Co-design of Transformer on FPGA
Through Sparse Attention and Dynamic Pipelining [28.336502115532905]
本稿ではトランスフォーマーアクセラレーションのためのコヒーレントシーケンス長適応型アルゴリズム-ハードウェア共設計を提案する。
ハードウェアフレンドリーなスパースアテンション演算子と長編ハードウェアリソーススケジューリングアルゴリズムを開発した。
我々の設計は、非常に小さな精度の損失があり、CPUやGPUの実装と比較して80.2$times$と2.6$times$ Speedupがある。
論文 参考訳(メタデータ) (2022-08-07T05:48:38Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - FTRANS: Energy-Efficient Acceleration of Transformers using FPGA [11.032972017827248]
本稿では,変換器をベースとした大規模言語表現のための高速化フレームワークFtransを提案する。
本フレームワークは,NLPモデルのモデルサイズを最大16倍に削減する。
FPGA設計は、CPUと比較して27.07倍、81倍の性能向上とエネルギー効率の向上を実現し、GPUと比較して最大8.80倍のエネルギー効率向上を実現している。
論文 参考訳(メタデータ) (2020-07-16T18:58:31Z) - SPEC2: SPECtral SParsE CNN Accelerator on FPGAs [31.31419913907224]
我々は、スペクトルCNNを練習し、加速する最初の研究であるSPEC2を提案する。
スパースカーネルへの効率的なランダムアクセスが可能なFPGA上に最適化されたパイプラインアーキテクチャを設計する。
得られたアクセラレータは、VGG16の最先端FPGA実装と比較して最大24倍のスループットを実現している。
論文 参考訳(メタデータ) (2019-10-16T23:30:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。