Computational Overhead of Locality Reduction in Binary Optimization
Problems
- URL: http://arxiv.org/abs/2012.09681v2
- Date: Mon, 19 Jul 2021 18:02:18 GMT
- Title: Computational Overhead of Locality Reduction in Binary Optimization
Problems
- Authors: Elisabetta Valiante, Maritza Hernandez, Amin Barzegar, Helmut G.
Katzgraber
- Abstract summary: We discuss the effects of locality reduction needed for the majority of solvers that can only accommodate 2-local (quadratic) cost functions.
Using a parallel tempering Monte Carlo solver on Microsoft Azure Quantum, we show that post reduction to a corresponding 2-local representation the problems become considerably harder to solve.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, there has been considerable interest in solving optimization
problems by mapping these onto a binary representation, sparked mostly by the
use of quantum annealing machines. Such binary representation is reminiscent of
a discrete physical two-state system, such as the Ising model. As such,
physics-inspired techniques -- commonly used in fundamental physics studies --
are ideally suited to solve optimization problems in a binary format. While
binary representations can be often found for paradigmatic optimization
problems, these typically result in k-local higher-order unconstrained binary
optimization cost functions. In this work, we discuss the effects of locality
reduction needed for the majority of the currently available quantum and
quantum-inspired solvers that can only accommodate 2-local (quadratic) cost
functions. General locality reduction approaches require the introduction of
ancillary variables which cause an overhead over the native problem. Using a
parallel tempering Monte Carlo solver on Microsoft Azure Quantum, as well as
k-local binary problems with planted solutions, we show that post reduction to
a corresponding 2-local representation the problems become considerably harder
to solve. We further quantify the increase in computational hardness introduced
by the reduction algorithm by measuring the variation of number of variables,
statistics of the coefficient values, and the population annealing entropic
family size. Our results demonstrate the importance of avoiding locality
reduction when solving optimization problems.
Related papers
- Analysis of the Non-variational Quantum Walk-based Optimisation Algorithm [0.0]
This paper introduces in detail a non-variational quantum algorithm designed to solve a wide range of optimisation problems.
The algorithm returns optimal and near-optimal solutions from repeated preparation and measurement of an amplified state.
arXiv Detail & Related papers (2024-07-29T13:54:28Z) - Quantum optimization using a 127-qubit gate-model IBM quantum computer can outperform quantum annealers for nontrivial binary optimization problems [0.0]
We introduce a comprehensive quantum solver for binary optimization problems on gate-model quantum computers.
It consistently delivers correct solutions for problems with up to 127 qubits.
We benchmark this solver on IBM quantum computers for several classically nontrivial unconstrained binary optimization problems.
arXiv Detail & Related papers (2024-06-03T19:08:01Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Quantum approximate optimization algorithm for qudit systems [0.0]
We discuss the quantum approximate optimization algorithm (QAOA) for qudit systems.
We illustrate how the QAOA can be used to formulate a variety of integer optimization problems.
We present numerical results for a charging optimization problem mapped onto a max-$k$-graph coloring problem.
arXiv Detail & Related papers (2022-04-01T10:37:57Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
We propose a new approach, which convert the bilevel problem to an equivalent constrained optimization, and then the primal-dual algorithm can be used to solve the problem.
Such an approach enjoys a few advantages including (a) addresses the multiple inner minima challenge; (b) fully first-order efficiency without Jacobian computations.
arXiv Detail & Related papers (2022-03-01T18:20:01Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z) - Solving Quadratic Unconstrained Binary Optimization with
divide-and-conquer and quantum algorithms [0.0]
We apply the divide-and-conquer approach to reduce the original problem to a collection of smaller problems.
This technique can be applied to any QUBO instance and leads to either an all-classical or a hybrid quantum-classical approach.
arXiv Detail & Related papers (2021-01-19T19:00:40Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Modeling Linear Inequality Constraints in Quadratic Binary Optimization
for Variational Quantum Eigensolver [0.0]
This paper introduces the use of tailored variational forms for variational quantum eigensolver.
Four constraints that usually appear in several optimization problems are modeled.
The main advantage of the proposed methodology is that the number of parameters on the variational form remain constant.
arXiv Detail & Related papers (2020-07-26T23:36:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.