Model-free and Bayesian Ensembling Model-based Deep Reinforcement
Learning for Particle Accelerator Control Demonstrated on the FERMI FEL
- URL: http://arxiv.org/abs/2012.09737v1
- Date: Thu, 17 Dec 2020 16:57:27 GMT
- Title: Model-free and Bayesian Ensembling Model-based Deep Reinforcement
Learning for Particle Accelerator Control Demonstrated on the FERMI FEL
- Authors: Simon Hirlaender, Niky Bruchon
- Abstract summary: This paper shows how reinforcement learning can be used on an operational level on accelerator physics problems.
We compare purely model-based to model-free reinforcement learning applied to the intensity optimisation on the FERMI FEL system.
We find that the model-based approach demonstrates higher representational power and sample-efficiency, while the performance of the model-free method is slightly superior.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning holds tremendous promise in accelerator controls. The
primary goal of this paper is to show how this approach can be utilised on an
operational level on accelerator physics problems. Despite the success of
model-free reinforcement learning in several domains, sample-efficiency still
is a bottle-neck, which might be encompassed by model-based methods. We compare
well-suited purely model-based to model-free reinforcement learning applied to
the intensity optimisation on the FERMI FEL system. We find that the
model-based approach demonstrates higher representational power and
sample-efficiency, while the asymptotic performance of the model-free method is
slightly superior. The model-based algorithm is implemented in a DYNA-style
using an uncertainty aware model, and the model-free algorithm is based on
tailored deep Q-learning. In both cases, the algorithms were implemented in a
way, which presents increased noise robustness as omnipresent in accelerator
control problems. Code is released in
https://github.com/MathPhysSim/FERMI_RL_Paper.
Related papers
- Physics-Informed Model-Based Reinforcement Learning [19.01626581411011]
One of the drawbacks of traditional reinforcement learning algorithms is their poor sample efficiency.
We learn a model of the environment, essentially its transition dynamics and reward function, use it to generate imaginary trajectories and backpropagate through them to update the policy.
We show that, in model-based RL, model accuracy mainly matters in environments that are sensitive to initial conditions.
We also show that, in challenging environments, physics-informed model-based RL achieves better average-return than state-of-the-art model-free RL algorithms.
arXiv Detail & Related papers (2022-12-05T11:26:10Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Model-Based Reinforcement Learning with SINDy [0.0]
We propose a novel method for discovering the governing non-linear dynamics of physical systems in reinforcement learning (RL)
We establish that this method is capable of discovering the underlying dynamics using significantly fewer trajectories than state of the art model learning algorithms.
arXiv Detail & Related papers (2022-08-30T19:03:48Z) - Structured Hammerstein-Wiener Model Learning for Model Predictive
Control [0.2752817022620644]
This paper aims to improve the reliability of optimal control using models constructed by machine learning methods.
In this paper, we propose a model that combines the Hammerstein-Wiener model with convex neural networks.
arXiv Detail & Related papers (2021-07-09T06:41:34Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
We propose ALOE, a new algorithm for learning conditional and unconditional EBMs for discrete structured data.
We show that the energy function and sampler can be trained efficiently via a new variational form of power iteration.
We present an energy model guided fuzzer for software testing that achieves comparable performance to well engineered fuzzing engines like libfuzzer.
arXiv Detail & Related papers (2020-11-10T19:31:29Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: Generalized Formulations [5.827236278192557]
This study presents a new modeling framework, named physics regularized Gaussian process (PRGP)
This novel approach can encode physics models, i.e., classical traffic flow models, into the Gaussian process architecture and so as to regularize the Machine Learning training process.
To prove the effectiveness of the proposed model, this paper conducts empirical studies on a real-world dataset that is collected from a stretch of I-15 freeway, Utah.
arXiv Detail & Related papers (2020-07-14T17:27:23Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Model-Augmented Actor-Critic: Backpropagating through Paths [81.86992776864729]
Current model-based reinforcement learning approaches use the model simply as a learned black-box simulator.
We show how to make more effective use of the model by exploiting its differentiability.
arXiv Detail & Related papers (2020-05-16T19:18:10Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: A New Insight into Machine Learning Applications [14.164058812512371]
This study presents a new modeling framework, named physics regularized machine learning (PRML), to encode classical traffic flow models into the machine learning architecture.
To prove the effectiveness of the proposed model, this paper conducts empirical studies on a real-world dataset which is collected from a stretch of I-15 freeway, Utah.
arXiv Detail & Related papers (2020-02-06T17:22:20Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.