Structured Hammerstein-Wiener Model Learning for Model Predictive
Control
- URL: http://arxiv.org/abs/2107.04247v1
- Date: Fri, 9 Jul 2021 06:41:34 GMT
- Title: Structured Hammerstein-Wiener Model Learning for Model Predictive
Control
- Authors: Ryuta Moriyasu, Taro Ikeda, Sho Kawaguchi, Kenji Kashima
- Abstract summary: This paper aims to improve the reliability of optimal control using models constructed by machine learning methods.
In this paper, we propose a model that combines the Hammerstein-Wiener model with convex neural networks.
- Score: 0.2752817022620644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper aims to improve the reliability of optimal control using models
constructed by machine learning methods. Optimal control problems based on such
models are generally non-convex and difficult to solve online. In this paper,
we propose a model that combines the Hammerstein-Wiener model with input convex
neural networks, which have recently been proposed in the field of machine
learning. An important feature of the proposed model is that resulting optimal
control problems are effectively solvable exploiting their convexity and
partial linearity while retaining flexible modeling ability. The practical
usefulness of the method is examined through its application to the modeling
and control of an engine airpath system.
Related papers
- Model-based Policy Optimization using Symbolic World Model [46.42871544295734]
The application of learning-based control methods in robotics presents significant challenges.
One is that model-free reinforcement learning algorithms use observation data with low sample efficiency.
We suggest approximating transition dynamics with symbolic expressions, which are generated via symbolic regression.
arXiv Detail & Related papers (2024-07-18T13:49:21Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
We consider a model-based reinforcement learning algorithm that infers the system dynamics from the available data and performs policy optimization on imaginary model rollouts.
This approach is vulnerable to exploiting model errors which can lead to catastrophic failures on the real system.
We show that better performance can be obtained with a single well-calibrated autoregressive model on the D4RL benchmark.
arXiv Detail & Related papers (2024-02-05T10:18:15Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
We propose generic model structures combining delay-coordinate encoding of measurements and full-state decoding to integrate reduced Koopman modeling and state estimation.
A case study demonstrates that our approach provides accurate control models and enables real-time capable nonlinear model predictive control of a high-purity cryogenic distillation column.
arXiv Detail & Related papers (2024-01-09T11:54:54Z) - Learning Exactly Linearizable Deep Dynamics Models [0.07366405857677226]
We propose a learning method for exactly linearizable dynamical models that can easily apply various control theories to ensure stability, reliability, etc.
The proposed model is employed for the real-time control of an automotive engine, and the results demonstrate good predictive performance and stable control under constraints.
arXiv Detail & Related papers (2023-11-30T05:40:55Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Online Dynamics Learning for Predictive Control with an Application to
Aerial Robots [3.673994921516517]
Even though prediction models can be learned and applied to model-based controllers, these models are often learned offline.
In this offline setting, training data is first collected and a prediction model is learned through an elaborated training procedure.
We propose an online dynamics learning framework that continually improves the accuracy of the dynamic model during deployment.
arXiv Detail & Related papers (2022-07-19T15:51:25Z) - Sufficiently Accurate Model Learning for Planning [119.80502738709937]
This paper introduces the constrained Sufficiently Accurate model learning approach.
It provides examples of such problems, and presents a theorem on how close some approximate solutions can be.
The approximate solution quality will depend on the function parameterization, loss and constraint function smoothness, and the number of samples in model learning.
arXiv Detail & Related papers (2021-02-11T16:27:31Z) - Model-free and Bayesian Ensembling Model-based Deep Reinforcement
Learning for Particle Accelerator Control Demonstrated on the FERMI FEL [0.0]
This paper shows how reinforcement learning can be used on an operational level on accelerator physics problems.
We compare purely model-based to model-free reinforcement learning applied to the intensity optimisation on the FERMI FEL system.
We find that the model-based approach demonstrates higher representational power and sample-efficiency, while the performance of the model-free method is slightly superior.
arXiv Detail & Related papers (2020-12-17T16:57:27Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
We outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models.
We are using such models for real-time diagnosis applications.
arXiv Detail & Related papers (2020-03-04T00:44:57Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.