Physics-Informed Model-Based Reinforcement Learning
- URL: http://arxiv.org/abs/2212.02179v4
- Date: Sun, 14 May 2023 11:27:19 GMT
- Title: Physics-Informed Model-Based Reinforcement Learning
- Authors: Adithya Ramesh, Balaraman Ravindran
- Abstract summary: One of the drawbacks of traditional reinforcement learning algorithms is their poor sample efficiency.
We learn a model of the environment, essentially its transition dynamics and reward function, use it to generate imaginary trajectories and backpropagate through them to update the policy.
We show that, in model-based RL, model accuracy mainly matters in environments that are sensitive to initial conditions.
We also show that, in challenging environments, physics-informed model-based RL achieves better average-return than state-of-the-art model-free RL algorithms.
- Score: 19.01626581411011
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We apply reinforcement learning (RL) to robotics tasks. One of the drawbacks
of traditional RL algorithms has been their poor sample efficiency. One
approach to improve the sample efficiency is model-based RL. In our model-based
RL algorithm, we learn a model of the environment, essentially its transition
dynamics and reward function, use it to generate imaginary trajectories and
backpropagate through them to update the policy, exploiting the
differentiability of the model. Intuitively, learning more accurate models
should lead to better model-based RL performance. Recently, there has been
growing interest in developing better deep neural network based dynamics models
for physical systems, by utilizing the structure of the underlying physics. We
focus on robotic systems undergoing rigid body motion without contacts. We
compare two versions of our model-based RL algorithm, one which uses a standard
deep neural network based dynamics model and the other which uses a much more
accurate, physics-informed neural network based dynamics model. We show that,
in model-based RL, model accuracy mainly matters in environments that are
sensitive to initial conditions, where numerical errors accumulate fast. In
these environments, the physics-informed version of our algorithm achieves
significantly better average-return and sample efficiency. In environments that
are not sensitive to initial conditions, both versions of our algorithm achieve
similar average-return, while the physics-informed version achieves better
sample efficiency. We also show that, in challenging environments,
physics-informed model-based RL achieves better average-return than
state-of-the-art model-free RL algorithms such as Soft Actor-Critic, as it
computes the policy-gradient analytically, while the latter estimates it
through sampling.
Related papers
- Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - MINN: Learning the dynamics of differential-algebraic equations and
application to battery modeling [3.900623554490941]
We propose a novel architecture for generating model-integrated neural networks (MINN)
MINN allows integration on the level of learning physics-based dynamics of the system.
We apply the proposed neural network architecture to model the electrochemical dynamics of lithium-ion batteries.
arXiv Detail & Related papers (2023-04-27T09:11:40Z) - Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective [142.36200080384145]
We propose a single objective which jointly optimize a latent-space model and policy to achieve high returns while remaining self-consistent.
We demonstrate that the resulting algorithm matches or improves the sample-efficiency of the best prior model-based and model-free RL methods.
arXiv Detail & Related papers (2022-09-18T03:51:58Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Model-Based Reinforcement Learning with SINDy [0.0]
We propose a novel method for discovering the governing non-linear dynamics of physical systems in reinforcement learning (RL)
We establish that this method is capable of discovering the underlying dynamics using significantly fewer trajectories than state of the art model learning algorithms.
arXiv Detail & Related papers (2022-08-30T19:03:48Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Physics-informed Dyna-Style Model-Based Deep Reinforcement Learning for
Dynamic Control [1.8275108630751844]
We propose to leverage the prior knowledge of underlying physics of the environment, where the governing laws are (partially) known.
By incorporating the prior information of the environment, the quality of the learned model can be notably improved.
arXiv Detail & Related papers (2021-07-31T02:19:36Z) - Learning to Reweight Imaginary Transitions for Model-Based Reinforcement
Learning [58.66067369294337]
When the model is inaccurate or biased, imaginary trajectories may be deleterious for training the action-value and policy functions.
We adaptively reweight the imaginary transitions, so as to reduce the negative effects of poorly generated trajectories.
Our method outperforms state-of-the-art model-based and model-free RL algorithms on multiple tasks.
arXiv Detail & Related papers (2021-04-09T03:13:35Z) - Model-free and Bayesian Ensembling Model-based Deep Reinforcement
Learning for Particle Accelerator Control Demonstrated on the FERMI FEL [0.0]
This paper shows how reinforcement learning can be used on an operational level on accelerator physics problems.
We compare purely model-based to model-free reinforcement learning applied to the intensity optimisation on the FERMI FEL system.
We find that the model-based approach demonstrates higher representational power and sample-efficiency, while the performance of the model-free method is slightly superior.
arXiv Detail & Related papers (2020-12-17T16:57:27Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.