Larger Sparse Quadratic Assignment Problem Optimization Using Quantum
Annealing and a Bit-Flip Heuristic Algorithm
- URL: http://arxiv.org/abs/2012.10135v3
- Date: Fri, 28 May 2021 06:33:18 GMT
- Title: Larger Sparse Quadratic Assignment Problem Optimization Using Quantum
Annealing and a Bit-Flip Heuristic Algorithm
- Authors: Michiya Kuramata, Ryota Katsuki, Kazuhide Nakata
- Abstract summary: Linear constraints reduce the size of problems that can be represented in quantum annealers.
We propose a method for solving a sparse QAP by applying a post-processing bit-flip algorithm to solutions obtained by the Ohzeki method.
We successfully solved a QAP of size 19 with high accuracy for the first time using D-Wave Advantage.
- Score: 0.4125187280299248
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum annealing and D-Wave quantum annealer attracted considerable
attention for their ability to solve combinatorial optimization problems. In
order to solve other type of optimization problems, it is necessary to apply
certain kinds of mathematical transformations. However, linear constraints
reduce the size of problems that can be represented in quantum annealers, owing
to the sparseness of connections between qubits. For example, the quadratic
assignment problem (QAP) with linear equality constraints can be solved only up
to size 12 in the quantum annealer D-Wave Advantage, which has 5640 qubits. To
overcome this obstacle, Ohzeki developed a method for relaxing the linear
equality constraints and numerically verified the effectiveness of this method
with some target problems, but others remain unsolvable. In particular, it is
difficult to obtain feasible solutions to problems with hard constraints, such
as the QAP. We therefore propose a method for solving the QAP with quantum
annealing by applying a post-processing bit-flip heuristic algorithm to
solutions obtained by the Ohzeki method. In a numerical experiment, we solved a
sparse QAP by the proposed method. This sparse QAP has been used in areas such
as item listing on an E-commerce website. We successfully solved a QAP of size
19 with high accuracy for the first time using D-Wave Advantage. We also
confirmed that the bit-flip heuristic algorithm moves infeasible solutions to
nearby feasible solutions in terms of Hamming distance with good computational
efficiency.
Related papers
- A quantum annealing approach to the minimum distance problem of quantum codes [0.0]
We introduce an approach to compute the minimum distance of quantum stabilizer codes by reformulating the problem as a Quadratic Unconstrained Binary Optimization problem.
We demonstrate practical viability of our method by comparing the performance of purely classical algorithms with the D-Wave Advantage 4.1 quantum annealer.
arXiv Detail & Related papers (2024-04-26T21:29:42Z) - Hybrid classical-quantum branch-and-bound algorithm for solving integer
linear problems [0.0]
Quantum annealers are suited to solve several logistic optimization problems expressed in the QUBO formulation.
The solutions proposed by the quantum annealers are generally not optimal, as thermal noise and other disturbing effects arise when the number of qubits involved in the calculation is too large.
We propose the use of the classical branch-and-bound algorithm, that divides the problem into sub-problems which are described by a lower number of qubits.
arXiv Detail & Related papers (2023-11-16T09:19:01Z) - Quantum-based Distributed Algorithms for Edge Node Placement and
Workload Allocation [8.937905773981702]
We present a mixed-integer linear programming (MILP) model for optimal edge server placement and workload allocation.
Existing quantum solvers are limited to solving unconstrained binary programming problems.
Our numerical experiments demonstrate the practicality of leveraging quantum supremacy to solve complex optimization problems in edge computing.
arXiv Detail & Related papers (2023-06-01T21:33:08Z) - Quantum-inspired optimization for wavelength assignment [51.55491037321065]
We propose and develop a quantum-inspired algorithm for solving the wavelength assignment problem.
Our results pave the way to the use of quantum-inspired algorithms for practical problems in telecommunications.
arXiv Detail & Related papers (2022-11-01T07:52:47Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
Quantum approximate optimization algorithms (QAOAs) utilize the power of quantum machines and inherit the spirit of adiabatic evolution.
We propose QAOA-in-QAOA ($textQAOA2$) to solve arbitrary large-scale MaxCut problems using quantum machines.
Our method can be seamlessly embedded into other advanced strategies to enhance the capability of QAOAs in large-scale optimization problems.
arXiv Detail & Related papers (2022-05-24T03:49:10Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation
Algorithm [7.581898299650999]
We introduce a simple yet efficient algorithm named Quantum Qubit Rotation Algorithm (QQRA)
The approximate solution of the max-cut problem can be obtained with probability close to 1.
We compare it with the well known quantum approximate optimization algorithm and the classical Goemans-Williamson algorithm.
arXiv Detail & Related papers (2021-10-15T11:19:48Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.