論文の概要: Deep Learning for Climate Model Output Statistics
- arxiv url: http://arxiv.org/abs/2012.10394v1
- Date: Wed, 9 Dec 2020 11:38:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-16 01:48:45.094918
- Title: Deep Learning for Climate Model Output Statistics
- Title(参考訳): 気候モデル出力統計の深層学習
- Authors: Michael Steininger, Daniel Abel, Katrin Ziegler, Anna Krause, Heiko
Paeth, Andreas Hotho
- Abstract要約: モデル出力統計(MOS)は、モデル出力を観測データと機械学習に適合させて誤差を低減する。
気候モデル出力の誤差を減らすために特別に設計されたcnnアーキテクチャconvmosを提案する。
その結果,誤りが大幅に減少し,一般的に使用されている3つのmosアプローチに比べて性能が向上した。
- 参考スコア(独自算出の注目度): 0.3360097031101955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Climate models are an important tool for the assessment of prospective
climate change effects but they suffer from systematic and representation
errors, especially for precipitation. Model output statistics (MOS) reduce
these errors by fitting the model output to observational data with machine
learning. In this work, we explore the feasibility and potential of deep
learning with convolutional neural networks (CNNs) for MOS. We propose the CNN
architecture ConvMOS specifically designed for reducing errors in climate model
outputs and apply it to the climate model REMO. Our results show a considerable
reduction of errors and mostly improved performance compared to three commonly
used MOS approaches.
- Abstract(参考訳): 気候モデルは将来的な気候変動の影響を評価する上で重要なツールであるが、特に降水量の体系的・表現的誤差に苦しむ。
モデル出力統計(MOS)は、モデル出力を観測データと機械学習に適合させてこれらの誤差を低減する。
本研究では,mos用畳み込みニューラルネットワーク(cnns)を用いた深層学習の実現可能性と可能性について検討する。
本稿では,気候モデル出力の誤差を低減するためのCNNアーキテクチャであるConvMOSを提案し,それを気候モデルREMOに適用する。
その結果,誤りが大幅に減少し,一般的に使用されている3つのmosアプローチに比べて性能が向上した。
関連論文リスト
- Evaluating Deep Learning Approaches for Predictions in Unmonitored Basins with Continental-scale Stream Temperature Models [1.8067095934521364]
最近の機械学習(ML)モデルは、大規模な空間スケールでの正確な予測に膨大なデータセットを利用することができる。
本研究では,モデル設計とインプットに必要なデータ,および性能向上のためのトレーニングについて考察する。
論文 参考訳(メタデータ) (2024-10-23T15:36:59Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
SMOE(Sparse Mixture of Expert)モデルは、言語モデリングにおける高密度モデルに代わるスケーラブルな代替品として登場した。
本研究は,SMoEアーキテクチャの設計に関する意思決定を行うために,タスク固有のモデルプルーニングについて検討する。
適応型タスク対応プルーニング手法 UNCURL を導入し,MoE 層当たりの専門家数をオフラインで学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-02T22:35:03Z) - Generating High-Resolution Regional Precipitation Using Conditional
Diffusion Model [7.784934642915291]
本稿では,気候データ,特に地域規模での降水量について,より詳細な生成モデルを提案する。
複数のLR気候変数に条件付き拡散確率モデルを用いる。
以上の結果から,下降気候データにおける条件拡散モデルの有効性が示唆された。
論文 参考訳(メタデータ) (2023-12-12T09:39:52Z) - A Comprehensive Evaluation and Analysis Study for Chinese Spelling Check [53.152011258252315]
音声とグラフィックの情報を合理的に使用することは,中国語のスペルチェックに有効であることを示す。
モデルはテストセットのエラー分布に敏感であり、モデルの欠点を反映している。
一般的なベンチマークであるSIGHANは、モデルの性能を確実に評価できない。
論文 参考訳(メタデータ) (2023-07-25T17:02:38Z) - Evaluating Loss Functions and Learning Data Pre-Processing for Climate
Downscaling Deep Learning Models [0.0]
気候下降の文脈における深層学習モデルに対する損失関数と非線形データ前処理法の効果について検討した。
その結果,L1の損失やL2の損失は,降水データのような不均衡なデータではL1の損失よりも有意に優れていることがわかった。
論文 参考訳(メタデータ) (2023-06-19T19:58:42Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
ビジョンファウンデーションモデルは、非常に大きなモデルキャパシティと幅広いトレーニングデータから恩恵を受け、印象的なパワーを示す。
しかし、実際には、下流のシナリオは限られた計算資源や効率上の考慮のため、小さなモデルしかサポートできない。
これは、ファンデーションモデルの現実的な応用に重要な課題をもたらします。
論文 参考訳(メタデータ) (2023-04-05T07:28:33Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Deep learning for improved global precipitation in numerical weather
prediction systems [1.721029532201972]
我々は、残差学習を用いた深層畳み込みニューラルネットワークのUNETアーキテクチャを、グローバルな降水モデルを学ぶための概念実証として使用しています。
その結果,インド気象局が使用した操作力学モデルと比較した。
この研究は、残差学習に基づくUNETが、目標降水量と物理的関係を解き放つことができることを示す概念実証である。
論文 参考訳(メタデータ) (2021-06-20T05:10:42Z) - Churn Reduction via Distillation [54.5952282395487]
本研究は, 基礎モデルを教師として用いた蒸留によるトレーニングと, 予測的チャーンに対する明示的な制約によるトレーニングとの等価性を示す。
次に, 蒸留が近年の多くのベースラインに対する低チャーン訓練に有効であることを示す。
論文 参考訳(メタデータ) (2021-06-04T18:03:31Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
視覚的MBRLアルゴリズムにおける予測モデルの設計決定について検討する。
潜在空間の使用など、しばしば重要と見なされる設計上の決定は、タスクのパフォーマンスにはほとんど影響しないことが分かりました。
我々は,この現象が探索とどのように関係しているか,および標準ベンチマークにおける下位スコーリングモデルのいくつかが,同じトレーニングデータでトレーニングされた場合のベストパフォーマンスモデルと同等の性能を発揮するかを示す。
論文 参考訳(メタデータ) (2020-12-08T18:03:21Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
本稿では,連続的畳み込み再帰層間の新しい2次元クロスアテンション機構を特徴とするエンコーダデコーダモデルであるTRU-NETを提案する。
降雨のゼロ・スクイド・%極端事象パターンを捉えるために,条件付き連続損失関数を用いた。
実験の結果,短期降水予測ではDLモデルよりもRMSEとMAEのスコアが低いことがわかった。
論文 参考訳(メタデータ) (2020-08-20T17:27:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。