論文の概要: Evaluating Deep Learning Approaches for Predictions in Unmonitored Basins with Continental-scale Stream Temperature Models
- arxiv url: http://arxiv.org/abs/2410.19865v1
- Date: Wed, 23 Oct 2024 15:36:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 18:59:02.525144
- Title: Evaluating Deep Learning Approaches for Predictions in Unmonitored Basins with Continental-scale Stream Temperature Models
- Title(参考訳): 大規模河川温度モデルによる未モニタリング盆地の予測のための深層学習手法の評価
- Authors: Jared D. Willard, Fabio Ciulla, Helen Weierbach, Vipin Kumar, Charuleka Varadharajan,
- Abstract要約: 最近の機械学習(ML)モデルは、大規模な空間スケールでの正確な予測に膨大なデータセットを利用することができる。
本研究では,モデル設計とインプットに必要なデータ,および性能向上のためのトレーニングについて考察する。
- 参考スコア(独自算出の注目度): 1.8067095934521364
- License:
- Abstract: The prediction of streamflows and other environmental variables in unmonitored basins is a grand challenge in hydrology. Recent machine learning (ML) models can harness vast datasets for accurate predictions at large spatial scales. However, there are open questions regarding model design and data needed for inputs and training to improve performance. This study explores these questions while demonstrating the ability of deep learning models to make accurate stream temperature predictions in unmonitored basins across the conterminous United States. First, we compare top-down models that utilize data from a large number of basins with bottom-up methods that transfer ML models built on local sites, reflecting traditional regionalization techniques. We also evaluate an intermediary grouped modeling approach that categorizes sites based on regional co-location or similarity of catchment characteristics. Second, we evaluate trade-offs between model complexity, prediction accuracy, and applicability for more target locations by systematically removing inputs. We then examine model performance when additional training data becomes available due to reductions in input requirements. Our results suggest that top-down models significantly outperform bottom-up and grouped models. Moreover, it is possible to get acceptable accuracy by reducing both dynamic and static inputs enabling predictions for more sites with lower model complexity and computational needs. From detailed error analysis, we determined that the models are more accurate for sites primarily controlled by air temperatures compared to locations impacted by groundwater and dams. By addressing these questions, this research offers a comprehensive perspective on optimizing ML model design for accurate predictions in unmonitored regions.
- Abstract(参考訳): モニタリングされていない盆地における河川流および他の環境変数の予測は、水文学における大きな課題である。
最近の機械学習(ML)モデルは、大規模な空間スケールでの正確な予測に膨大なデータセットを利用することができる。
しかし、モデル設計やインプットに必要なデータ、パフォーマンス向上のためのトレーニングについては、オープンな疑問がある。
本研究は,アメリカ合衆国全土のモニタリングされていない流域において,深層学習モデルが正確な流水温度予測を行う能力を示すとともに,これらの課題を探求するものである。
まず、多くの盆地からのデータを利用するトップダウンモデルと、ローカルサイト上に構築されたMLモデルを転送するボトムアップ手法を比較し、従来の地域化手法を反映する。
また、地域的コロケーションやキャッチメント特性の類似性に基づいて、サイトを分類する中間グループモデリング手法の評価を行った。
第2に、入力を体系的に除去することで、モデル複雑性、予測精度、より多くのターゲット位置への適用性の間のトレードオフを評価する。
次に、入力要求の低減により追加のトレーニングデータが利用可能になった場合のモデル性能について検討する。
その結果,トップダウンモデルの方がボトムアップモデルやグループモデルよりも優れていたことが示唆された。
さらに、モデル複雑性と計算ニーズの低いサイトをより多く予測できるように、動的入力と静的入力の両方を削減することで、許容できる精度を得ることができる。
詳細な誤差解析から, 地下水やダムの影響を受ける場所よりも, 主に気温によって制御される場所の方が精度が高いことが分かった。
これらの疑問に対処することにより、未モニタリング領域における正確な予測のためにMLモデル設計を最適化するための総合的な視点を提供する。
関連論文リスト
- Hierarchically Disentangled Recurrent Network for Factorizing System Dynamics of Multi-scale Systems [4.634606500665259]
マルチスケールプロセスのモデリングのための知識誘導機械学習(KGML)フレームワークを提案する。
本研究では,水文学における流れ予測の文脈におけるその性能について検討する。
論文 参考訳(メタデータ) (2024-07-29T16:25:43Z) - Site-specific Deterministic Temperature and Humidity Forecasts with Explainable and Reliable Machine Learning [0.0]
近年の機械学習の発展により、この問題に対する新しいアプローチとしてMLを適用することへの関心が高まっている。
我々は'Multi-SiteBoost'という名前のワーキングMLフレームワークを開発し、初期テストの結果はバイアス補正NWPモデルのグリッド値と比較して大幅に改善された。
論文 参考訳(メタデータ) (2024-04-04T09:12:13Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
本稿では,大規模事前学習モデルを用いて,サンプル難易度を考慮したエントロピー正規化による下流モデルトレーニングを指導する。
我々は、挑戦的なベンチマークで精度と不確実性の校正を同時に改善する。
論文 参考訳(メタデータ) (2023-04-20T07:29:23Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Artificial Intelligence Hybrid Deep Learning Model for Groundwater Level
Prediction Using MLP-ADAM [0.0]
本稿では,多層パーセプトロンを用いて地下水位をシミュレーションする。
この問題には適応モーメント推定アルゴリズムも用いられる。
その結果,ディープラーニングアルゴリズムは高精度な予測が可能であることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T10:11:45Z) - Churn Reduction via Distillation [54.5952282395487]
本研究は, 基礎モデルを教師として用いた蒸留によるトレーニングと, 予測的チャーンに対する明示的な制約によるトレーニングとの等価性を示す。
次に, 蒸留が近年の多くのベースラインに対する低チャーン訓練に有効であることを示す。
論文 参考訳(メタデータ) (2021-06-04T18:03:31Z) - Continental-scale streamflow modeling of basins with reservoirs: a
demonstration of effectiveness and a delineation of challenges [4.834945446235863]
主要水路の大部分が流水に影響を与えるダムを有しており、大規模な水理モデルで考慮する必要がある。
ここでは,長期記憶(LSTM)深層学習モデルにより,どのタイプの流域がよく表現できるかを分割・コンカレントアプローチで検討する。
アメリカ合衆国に分布する3557盆地(83%が減衰)のデータを解析し,貯水池の用途,容量・流出率(dor),流れのディバージョンの影響を明らかにした。
論文 参考訳(メタデータ) (2021-01-12T11:49:54Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
視覚的MBRLアルゴリズムにおける予測モデルの設計決定について検討する。
潜在空間の使用など、しばしば重要と見なされる設計上の決定は、タスクのパフォーマンスにはほとんど影響しないことが分かりました。
我々は,この現象が探索とどのように関係しているか,および標準ベンチマークにおける下位スコーリングモデルのいくつかが,同じトレーニングデータでトレーニングされた場合のベストパフォーマンスモデルと同等の性能を発揮するかを示す。
論文 参考訳(メタデータ) (2020-12-08T18:03:21Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
モデル予測だけでなく、その解釈可能性も、プロセスエンジニアに公開する必要があります。
LIMEに基づくモデルに依存しない局所的解釈可能性ソリューションが最近出現し、元の手法が改良された。
本稿では, 燃焼炉で生成する高温金属の温度を推定するデータ駆動型モデルの局所的解釈可能性に関する新しいアプローチ, VAE-LIMEを提案する。
論文 参考訳(メタデータ) (2020-07-15T07:07:07Z) - Mission-Aware Spatio-Temporal Deep Learning Model for UAS Instantaneous
Density Prediction [3.59465210252619]
制御されていない低高度空域での日々のsUAS活動の数は、数年のうちに数百万人に達すると予想されている。
深層学習に基づくUAS瞬時密度予測モデルを提案する。
論文 参考訳(メタデータ) (2020-03-22T02:40:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。