Computer Vision based Accident Detection for Autonomous Vehicles
- URL: http://arxiv.org/abs/2012.10870v1
- Date: Sun, 20 Dec 2020 08:51:10 GMT
- Title: Computer Vision based Accident Detection for Autonomous Vehicles
- Authors: Dhananjai Chand, Savyasachi Gupta, and Ilaiah Kavati
- Abstract summary: We propose a novel support system for self-driving cars that detects vehicular accidents through a dashboard camera.
The framework has been tested on a custom dataset of dashcam footage and achieves a high accident detection rate while maintaining a low false alarm rate.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerous Deep Learning and sensor-based models have been developed to detect
potential accidents with an autonomous vehicle. However, a self-driving car
needs to be able to detect accidents between other vehicles in its path and
take appropriate actions such as to slow down or stop and inform the concerned
authorities. In this paper, we propose a novel support system for self-driving
cars that detects vehicular accidents through a dashboard camera. The system
leverages the Mask R-CNN framework for vehicle detection and a centroid
tracking algorithm to track the detected vehicle. Additionally, the framework
calculates various parameters such as speed, acceleration, and trajectory to
determine whether an accident has occurred between any of the tracked vehicles.
The framework has been tested on a custom dataset of dashcam footage and
achieves a high accident detection rate while maintaining a low false alarm
rate.
Related papers
- DeepAccident: A Motion and Accident Prediction Benchmark for V2X
Autonomous Driving [76.29141888408265]
We propose a large-scale dataset containing diverse accident scenarios that frequently occur in real-world driving.
The proposed DeepAccident dataset includes 57K annotated frames and 285K annotated samples, approximately 7 times more than the large-scale nuScenes dataset.
arXiv Detail & Related papers (2023-04-03T17:37:00Z) - Infrastructure-based End-to-End Learning and Prevention of Driver
Failure [68.0478623315416]
FailureNet is a recurrent neural network trained end-to-end on trajectories of both nominal and reckless drivers in a scaled miniature city.
It can accurately identify control failures, upstream perception errors, and speeding drivers, distinguishing them from nominal driving.
Compared to speed or frequency-based predictors, FailureNet's recurrent neural network structure provides improved predictive power, yielding upwards of 84% accuracy when deployed on hardware.
arXiv Detail & Related papers (2023-03-21T22:55:51Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - A Real-Time Wrong-Way Vehicle Detection Based on YOLO and Centroid
Tracking [0.0]
Wrong-way driving is one of the main causes of road accidents and traffic jam all over the world.
In this paper, we propose an automatic wrong-way vehicle detection system from on-road surveillance camera footage.
arXiv Detail & Related papers (2022-10-19T00:53:28Z) - Threat Detection In Self-Driving Vehicles Using Computer Vision [0.0]
We propose a threat detection mechanism for autonomous self-driving cars using dashcam videos.
There are four major components, namely, YOLO to identify the objects, advanced lane detection algorithm, multi regression model to measure the distance of the object from the camera.
The final accuracy of our proposed Threat Detection Model (TDM) is 82.65%.
arXiv Detail & Related papers (2022-09-06T12:01:07Z) - Real-Time Accident Detection in Traffic Surveillance Using Deep Learning [0.8808993671472349]
This paper presents a new efficient framework for accident detection at intersections for traffic surveillance applications.
The proposed framework consists of three hierarchical steps, including efficient and accurate object detection based on the state-of-the-art YOLOv4 method.
The robustness of the proposed framework is evaluated using video sequences collected from YouTube with diverse illumination conditions.
arXiv Detail & Related papers (2022-08-12T19:07:20Z) - Detection of road traffic crashes based on collision estimation [0.0]
The framework is built of five modules.
The main objective is to achieve higher accuracy with fewer false alarms and to implement a simple system based on pipelining technique.
arXiv Detail & Related papers (2022-07-26T13:21:15Z) - CODA: A Real-World Road Corner Case Dataset for Object Detection in
Autonomous Driving [117.87070488537334]
We introduce a challenging dataset named CODA that exposes this critical problem of vision-based detectors.
The performance of standard object detectors trained on large-scale autonomous driving datasets significantly drops to no more than 12.8% in mAR.
We experiment with the state-of-the-art open-world object detector and find that it also fails to reliably identify the novel objects in CODA.
arXiv Detail & Related papers (2022-03-15T08:32:56Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit to domain idiosyncrasies.
We propose a novel learning approach that drastically reduces this gap by fine-tuning the detector on pseudo-labels in the target domain.
We show, on five autonomous driving datasets, that fine-tuning the detector on these pseudo-labels substantially reduces the domain gap to new driving environments.
arXiv Detail & Related papers (2021-03-26T01:18:11Z) - Computer Vision based Animal Collision Avoidance Framework for
Autonomous Vehicles [0.0]
Animals have been a common sighting on roads in India which leads to several accidents between them and vehicles every year.
This makes it vital to develop a support system for driverless vehicles that assists in preventing these forms of accidents.
We propose a framework for avoiding vehicle-to-animal collisions by developing an efficient approach for the detection of animals on highways.
arXiv Detail & Related papers (2020-12-20T09:51:23Z) - Driver Intention Anticipation Based on In-Cabin and Driving Scene
Monitoring [52.557003792696484]
We present a framework for the detection of the drivers' intention based on both in-cabin and traffic scene videos.
Our framework achieves a prediction with the accuracy of 83.98% and F1-score of 84.3%.
arXiv Detail & Related papers (2020-06-20T11:56:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.