論文の概要: Personalized fall detection monitoring system based on learning from the
user movements
- arxiv url: http://arxiv.org/abs/2012.11195v1
- Date: Mon, 21 Dec 2020 09:19:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-29 08:15:39.102647
- Title: Personalized fall detection monitoring system based on learning from the
user movements
- Title(参考訳): ユーザ動作からの学習に基づくパーソナライズされた転倒検出モニタリングシステム
- Authors: Pranesh Vallabh, Nazanin Malekian, Reza Malekian, Ting-Mei Li
- Abstract要約: その結果,ユーザのニーズに応じてシステム全体の精度を向上させることができた。
本論文のパーソナライズの概念は、医学分野の他の研究や、特定のクラスにおいてデータの入手が難しい分野にも拡張することができる。
- 参考スコア(独自算出の注目度): 3.8310036898137296
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Personalized fall detection system is shown to provide added and more
benefits compare to the current fall detection system. The personalized model
can also be applied to anything where one class of data is hard to gather. The
results show that adapting to the user needs, improve the overall accuracy of
the system. Future work includes detection of the smartphone on the user so
that the user can place the system anywhere on the body and make sure it
detects. Even though the accuracy is not 100% the proof of concept of
personalization can be used to achieve greater accuracy. The concept of
personalization used in this paper can also be extended to other research in
the medical field or where data is hard to come by for a particular class. More
research into the feature extraction and feature selection module should be
investigated. For the feature selection module, more research into selecting
features based on one class data.
- Abstract(参考訳): パーソナライズされた転倒検出システムは、現在の転倒検出システムと比較して、さらに多くの利点を提供する。
パーソナライズされたモデルは、1つのデータクラスが収集しにくいものにも適用できる。
その結果,ユーザのニーズに応じてシステム全体の精度を向上させることができた。
将来の作業には、スマートフォンをユーザーの体の上に検知し、ユーザーがシステムをどこにでも配置し、確実に検出できるようにする。
精度は100%ではないものの、パーソナライズの概念の証明は、より高い精度を達成するために使用できる。
本論文のパーソナライズの概念は、医学分野の他の研究や、特定のクラスにおいてデータの入手が難しい分野にも拡張することができる。
特徴抽出および特徴選択モジュールに関するさらなる研究を行う必要がある。
機能選択モジュールについては、1つのクラスデータに基づいた機能選択に関するさらなる研究がある。
関連論文リスト
- Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
クリックスルー率(CTR)予測は、ユーザーが商品をクリックする確率を予測することを目的としており、リコメンデーションシステムにおいてますます重要になっている。
近年,ユーザの行動からユーザの興味を自動的に抽出する深層学習モデルが大きな成功を収めている。
そこで我々は,メタラッパー(Meta-Wrapper)と呼ばれるラッパー手法の枠組みに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-06-28T03:28:15Z) - Checking HateCheck: a cross-functional analysis of behaviour-aware
learning for hate speech detection [4.0810783261728565]
本稿では,ヘイトスピーチ検出システムのための機能テストスイートであるHateCheckを用いた微調整方式について検討する。
テストケースのカテゴリを保持して,HateCheckのさまざまな構成に関するモデルをトレーニングし,評価する。
微調整処理により,保持機能と同一性群の分類精度が向上した。
しかし, 保留機能クラスやヘイトスピーチ検出データの性能は低下し, 一般化は多種多様であった。
論文 参考訳(メタデータ) (2022-04-08T13:03:01Z) - An Empirical Study of End-to-End Temporal Action Detection [82.64373812690127]
時間的行動検出(TAD)はビデオ理解において重要な課題である。
エンド・ツー・エンドの学習よりも、既存のほとんどの手法では、ヘッドオンリーの学習パラダイムを採用しています。
頭のみの学習よりもエンド・ツー・エンドの学習の利点を検証し、最大11%のパフォーマンス向上を観察する。
論文 参考訳(メタデータ) (2022-04-06T16:46:30Z) - Proper Reuse of Image Classification Features Improves Object Detection [4.240984948137734]
トランスファーラーニングの一般的な実践は、データに基づく上流タスクで事前学習することで、下流モデルの重み付けを初期化することである。
近年の研究では、長いトレーニング体制下では必須ではないことが示されており、背骨をスクラッチからトレーニングするためのレシピを提供している。
知識保存の極端な形態 -- 分類器dのバックボーンを凍結する -- が、一貫して多くの異なる検出モデルを改善していることを示す。
論文 参考訳(メタデータ) (2022-04-01T14:44:47Z) - Privacy-Preserving Personalized Fitness Recommender System (P3FitRec): A
Multi-level Deep Learning Approach [6.647564421295215]
プライバシーに配慮したパーソナライズされたフィットネスレコメンデーションシステムを提案する。
大規模な実フィットネスデータセットから重要な特徴を学習する多層ディープラーニングフレームワークを導入する。
本手法は,センサデータからユーザのフィットネス特性を推定することによりパーソナライズを実現する。
論文 参考訳(メタデータ) (2022-03-23T05:27:35Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [73.02413694753423]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - RGRecSys: A Toolkit for Robustness Evaluation of Recommender Systems [100.54655931138444]
複数の次元を包含するレコメンダシステムに対して,ロバスト性に関するより包括的視点を提案する。
本稿では、RecSys用のロバストネス評価ツールキットRobustness Gymを紹介し、リコメンダシステムモデルのロバストネスを迅速かつ均一に評価できるようにする。
論文 参考訳(メタデータ) (2022-01-12T10:32:53Z) - Finding Facial Forgery Artifacts with Parts-Based Detectors [73.08584805913813]
顔の個々の部分に焦点を絞った一連の偽造検知システムを設計する。
これらの検出器を用いて、FaceForensics++、Celeb-DF、Facebook Deepfake Detection Challengeデータセットの詳細な実験分析を行う。
論文 参考訳(メタデータ) (2021-09-21T16:18:45Z) - Feature selection for intrusion detection systems [0.0]
本稿では,連続的な入力特徴と離散的目標値を考える上での課題に対処する特徴選択手法を提案する。
我々は、DDoS信号と良性信号の区別において、99.9%の精度を達成できる、機械学習に基づく高精度な検出システムを開発するために、我々の研究結果を用いている。
論文 参考訳(メタデータ) (2021-06-28T18:53:21Z) - A User-Guided Bayesian Framework for Ensemble Feature Selection in Life
Science Applications (UBayFS) [0.0]
本稿では,ベイズ統計フレームワークに組み込んだアンサンブル特徴選択手法UBayFSを提案する。
提案手法は,データとドメイン知識の2つの情報源を考慮し,特徴選択のプロセスを強化する。
標準的な機能セレクタとの比較では、UBayFSは競争力のあるパフォーマンスを実現し、ドメイン知識を組み込むための柔軟性を提供する。
論文 参考訳(メタデータ) (2021-04-30T06:51:33Z) - Robust and Accurate Object Detection via Adversarial Learning [111.36192453882195]
この研究は、逆の例を探索することで、物体検出器の微調整段階を補強する。
提案手法は,オブジェクト検出ベンチマークにおいて,最先端のEfficientDetsの性能を+1.1mAP向上させる。
論文 参考訳(メタデータ) (2021-03-23T19:45:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。