論文の概要: Memory Augmented Cross-encoders for Controllable Personalized Search
- arxiv url: http://arxiv.org/abs/2411.02790v1
- Date: Tue, 05 Nov 2024 03:55:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 14:59:24.489588
- Title: Memory Augmented Cross-encoders for Controllable Personalized Search
- Title(参考訳): 制御可能なパーソナライズ検索のためのメモリ拡張クロスエンコーダ
- Authors: Sheshera Mysore, Garima Dhanania, Kishor Patil, Surya Kallumadi, Andrew McCallum, Hamed Zamani,
- Abstract要約: 制御可能なパーソナライズされた検索のためのアプローチを提案する。
我々のモデルであるCtrlCEは,ユーザの履歴項目から編集可能なメモリを付加した,新しいクロスエンコーダモデルを提案する。
我々は、CtrlCEを効果的にパーソナライズし、制御可能なパーソナライズ検索の様々な重要な目標を達成できることを示す。
- 参考スコア(独自算出の注目度): 53.7152408217116
- License:
- Abstract: Personalized search represents a problem where retrieval models condition on historical user interaction data in order to improve retrieval results. However, personalization is commonly perceived as opaque and not amenable to control by users. Further, personalization necessarily limits the space of items that users are exposed to. Therefore, prior work notes a tension between personalization and users' ability for discovering novel items. While discovery of novel items in personalization setups may be resolved through search result diversification, these approaches do little to allow user control over personalization. Therefore, in this paper, we introduce an approach for controllable personalized search. Our model, CtrlCE presents a novel cross-encoder model augmented with an editable memory constructed from users historical items. Our proposed memory augmentation allows cross-encoder models to condition on large amounts of historical user data and supports interaction from users permitting control over personalization. Further, controllable personalization for search must account for queries which don't require personalization, and in turn user control. For this, we introduce a calibrated mixing model which determines when personalization is necessary. This allows system designers using CtrlCE to only obtain user input for control when necessary. In multiple datasets of personalized search, we show CtrlCE to result in effective personalization as well as fulfill various key goals for controllable personalized search.
- Abstract(参考訳): パーソナライズされた検索は、検索結果を改善するために、過去のユーザインタラクションデータに対して検索モデルが条件をモデル化する問題である。
しかし、パーソナライゼーションは一般に不透明であり、ユーザによるコントロールには適さないと見なされる。
さらに、パーソナライゼーションは、ユーザが露出するアイテムの空間を制限する必要がある。
そのため、先行研究では、パーソナライズと新規アイテム発見能力の緊張感が指摘されている。
パーソナライズ設定における新規項目の発見は、検索結果の多様化によって解決される可能性があるが、これらのアプローチは、パーソナライズをユーザがコントロールできるようには、ほとんどない。
そこで本稿では,制御可能なパーソナライズ検索手法を提案する。
我々のモデルであるCtrlCEは,ユーザの履歴項目から編集可能なメモリを付加した,新しいクロスエンコーダモデルを提案する。
提案したメモリ拡張により、クロスエンコーダモデルは、大量の歴史的ユーザデータを条件付けし、パーソナライゼーションの制御を許可するユーザからのインタラクションをサポートする。
さらに、検索のための制御可能なパーソナライズは、パーソナライズを必要としないクエリを考慮し、その上でユーザコントロールを行なわなければならない。
そこで本研究では,パーソナライズが必要なタイミングを決定するキャリブレーション混合モデルを提案する。
これにより、CtrlCEを使用するシステム設計者は、必要に応じてユーザー入力のみを取得することができる。
パーソナライズされた検索の複数のデータセットにおいて、CtrlCEは効果的なパーソナライゼーションをもたらすとともに、パーソナライズ可能なパーソナライズされた検索において、様々な重要な目標を達成できることを示す。
関連論文リスト
- LLMs + Persona-Plug = Personalized LLMs [41.60364110693824]
パーソナライゼーションは多くの言語タスクやアプリケーションにおいて重要な役割を担っている。
これにより、大きな言語モデル(LLM)を適用して、ユーザの好みに合わせてカスタマイズされたアウトプットを生成する、さまざまなパーソナライズされたアプローチが開発された。
そこで我々は,LLMモデルを提案する。軽量なプラグインユーザ埋め込みモジュールを用いて,過去の状況をすべてモデル化し,個人毎のユーザ固有の埋め込みを構築する。
論文 参考訳(メタデータ) (2024-09-18T11:54:45Z) - Personalized Federated Collaborative Filtering: A Variational AutoEncoder Approach [49.63614966954833]
Federated Collaborative Filtering (FedCF)は、プライバシを保護する新しいレコメンデーションフレームワークの開発に焦点を当てた新興分野である。
本稿では,ユーザのパーソナライズされた情報を潜在変数とニューラルモデルに同時に保存することで,新たなパーソナライズされたFedCF手法を提案する。
提案フレームワークを効果的に学習するために,ユーザインタラクションベクトル再構成と欠落した値予測を統合することで,特殊変分オートエンコーダ(VAE)タスクとして問題をモデル化する。
論文 参考訳(メタデータ) (2024-08-16T05:49:14Z) - PEFT-U: Parameter-Efficient Fine-Tuning for User Personalization [9.594958534074074]
ユーザパーソナライズのためのNLPモデルの構築と評価のための新しいデータセットであるPEFT-Uベンチマークを紹介する。
多様なユーザ中心タスクのコンテキストにおいて、LLMを効率よくパーソナライズし、ユーザ固有の嗜好に適合させるという課題について検討する。
論文 参考訳(メタデータ) (2024-07-25T14:36:18Z) - HYDRA: Model Factorization Framework for Black-Box LLM Personalization [36.21602686505842]
パーソナライゼーションは現代のインテリジェントシステムにおいて重要な研究領域として現れてきた。
ブラックボックスの大規模言語モデル(LLM)が示した驚くべき数ショットの能力にもかかわらず、それらのモデルパラメータの本質的な不透明さは、生成された出力を個々の期待と整合させる上で大きな課題である。
本研究では,履歴データからユーザ固有の行動パターンを抽出し,パーソナライズされた生成を提供するモデル因子化フレームワークHYDRAを提案する。
論文 参考訳(メタデータ) (2024-06-05T03:08:46Z) - Towards Unified Multi-Modal Personalization: Large Vision-Language Models for Generative Recommendation and Beyond [87.1712108247199]
我々の目標は、マルチモーダルパーソナライゼーションシステム(UniMP)のための統一パラダイムを確立することである。
我々は、幅広いパーソナライズされたニーズに対処できる汎用的でパーソナライズされた生成フレームワークを開発する。
我々の手法は、パーソナライズされたタスクのための基礎言語モデルの能力を高める。
論文 参考訳(メタデータ) (2024-03-15T20:21:31Z) - Persona-DB: Efficient Large Language Model Personalization for Response Prediction with Collaborative Data Refinement [79.2400720115588]
本稿では,タスクコンテキスト間の一般化を改善するための階層的な構築プロセスからなる,シンプルで効果的なフレームワークであるPersona-DBを紹介する。
応答予測の評価において,Persona-DB は精度を著しく低減した検索サイズで維持する上で,より優れたコンテキスト効率を示す。
我々の実験は、ユーザーが極めて少ないデータを持つ場合、コールドスタートシナリオで10%以上の顕著な改善が示されていることも示している。
論文 参考訳(メタデータ) (2024-02-16T20:20:43Z) - Incremental user embedding modeling for personalized text classification [12.381095398791352]
個々のユーザプロファイルとインタラクション履歴は、現実世界のアプリケーションでカスタマイズされたエクスペリエンスを提供する上で重要な役割を果たす。
本稿では,ユーザの最近のインタラクション履歴を動的に統合したインクリメンタルなユーザ埋め込みモデリング手法を提案する。
Redditデータセットに基づくパーソナライズされた多クラス分類タスクに適用することで,このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-02-13T17:33:35Z) - Towards Personalized Answer Generation in E-Commerce via
Multi-Perspective Preference Modeling [62.049330405736406]
Eコマースプラットフォーム上での製品質問回答(PQA)は、インテリジェントオンラインショッピングアシスタントとして機能するため、注目を集めている。
なぜなら、多くの顧客は、自分でのみカスタマイズされた情報でパーソナライズされた回答を見たいと思っているからです。
PQAにおけるパーソナライズされた回答を生成するための,新しいマルチパースペクティブなユーザ嗜好モデルを提案する。
論文 参考訳(メタデータ) (2021-12-27T07:51:49Z) - Unsupervised Model Personalization while Preserving Privacy and
Scalability: An Open Problem [55.21502268698577]
本研究では,非教師なしモデルパーソナライゼーションの課題について検討する。
この問題を探求するための新しいDual User-Adaptation Framework(DUA)を提供する。
このフレームワークは、サーバ上のモデルパーソナライズとユーザデバイス上のローカルデータ正規化に柔軟にユーザ適応を分散させる。
論文 参考訳(メタデータ) (2020-03-30T09:35:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。