論文の概要: Neural Methods for Effective, Efficient, and Exposure-Aware Information
Retrieval
- arxiv url: http://arxiv.org/abs/2012.11685v2
- Date: Fri, 19 Mar 2021 21:47:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-27 06:47:39.760755
- Title: Neural Methods for Effective, Efficient, and Exposure-Aware Information
Retrieval
- Title(参考訳): 効果的・効率的・露光認識情報検索のためのニューラル手法
- Authors: Bhaskar Mitra
- Abstract要約: 情報検索の具体的なニーズと課題に動機づけられた新しいニューラルアーキテクチャと手法を紹介します。
多くの実生活のIRタスクにおいて、検索には数十億のドキュメントを含む商用Web検索エンジンのドキュメントインデックスなど、非常に大規模なコレクションが含まれる。
- 参考スコア(独自算出の注目度): 7.3371176873092585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks with deep architectures have demonstrated significant
performance improvements in computer vision, speech recognition, and natural
language processing. The challenges in information retrieval (IR), however, are
different from these other application areas. A common form of IR involves
ranking of documents--or short passages--in response to keyword-based queries.
Effective IR systems must deal with query-document vocabulary mismatch problem,
by modeling relationships between different query and document terms and how
they indicate relevance. Models should also consider lexical matches when the
query contains rare terms--such as a person's name or a product model
number--not seen during training, and to avoid retrieving semantically related
but irrelevant results. In many real-life IR tasks, the retrieval involves
extremely large collections--such as the document index of a commercial Web
search engine--containing billions of documents. Efficient IR methods should
take advantage of specialized IR data structures, such as inverted index, to
efficiently retrieve from large collections. Given an information need, the IR
system also mediates how much exposure an information artifact receives by
deciding whether it should be displayed, and where it should be positioned,
among other results. Exposure-aware IR systems may optimize for additional
objectives, besides relevance, such as parity of exposure for retrieved items
and content publishers. In this thesis, we present novel neural architectures
and methods motivated by the specific needs and challenges of IR tasks.
- Abstract(参考訳): 深いアーキテクチャを持つニューラルネットワークは、コンピュータビジョン、音声認識、自然言語処理において大幅な性能向上を示している。
しかし、情報検索(IR)の課題は他の応用分野とは異なる。
IRの一般的な形式は、キーワードベースのクエリに応答して、文書または短いパスのランク付けを含む。
有効なirシステムは、クエリーとドキュメントの用語間の関係をモデル化することで、クエリーとドキュメントの語彙のミスマッチ問題に対処する必要がある。
モデルは、クエリにレアな用語(人名や製品モデル番号など)が含まれている場合の語彙マッチングも考慮し、トレーニング中に見えないようにし、意味的に関連があるが無関係な結果の検索を避ける必要がある。
多くの実生活のIRタスクにおいて、検索には数十億のドキュメントを含む商用Web検索エンジンのドキュメントインデックスなど、非常に大規模なコレクションが含まれる。
効率的なIR手法は、逆インデックスのような特殊なIRデータ構造を利用して、大規模なコレクションから効率的に取り出す必要がある。
情報が必要な場合、IRシステムは、情報アーティファクトがどれだけの露出を受信するかを、表示すべきか、どこに配置すべきかを判断することで仲介する。
露光対応IRシステムは、検索したアイテムやコンテンツパブリッシャに対する露出のパリティなどの関連性以外に、さらなる目的のために最適化することができる。
本稿では,irタスクの具体的ニーズと課題に動機づけられた新しいニューラルアーキテクチャと手法を提案する。
関連論文リスト
- INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning [59.07490387145391]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて印象的な機能を示している。
情報検索(IR)タスクへのそれらの適用は、自然言語における多くのIR固有の概念の頻繁な発生のため、いまだに困難である。
我々は,3つの基本IRカテゴリにまたがる20のタスクを含む新しいインストラクションチューニングデータセット InterS を導入する。
論文 参考訳(メタデータ) (2024-01-12T12:10:28Z) - Search Still Matters: Information Retrieval in the Era of Generative AI [1.68609633200389]
この視点は、IRプロセスのモチベーション、考慮、結果の文脈における生成的AIの使用を探求する。
このようなシステムのユーザ、特に学者は、信頼性、タイムライン、検索の文脈化に関する懸念を持っている。
論文 参考訳(メタデータ) (2023-11-30T13:36:21Z) - Plot Retrieval as an Assessment of Abstract Semantic Association [131.58819293115124]
Plot Retrievalのテキストペアは単語の重複を少なくし、より抽象的なセマンティックアソシエーションを持つ。
Plot Retrievalは、IRモデルのセマンティックアソシエーションモデリング能力に関するさらなる研究のベンチマークとなる。
論文 参考訳(メタデータ) (2023-11-03T02:02:43Z) - Large Language Models for Information Retrieval: A Survey [57.7992728506871]
情報検索は、項ベースの手法から高度なニューラルモデルとの統合へと進化してきた。
近年の研究では、大規模言語モデル(LLM)を活用してIRシステムの改善が試みられている。
LLMとIRシステムの合流点を探索し、クエリリライト、リトリバー、リランカー、リーダーといった重要な側面を含む。
論文 参考訳(メタデータ) (2023-08-14T12:47:22Z) - Building Interpretable and Reliable Open Information Retriever for New
Domains Overnight [67.03842581848299]
情報検索は、オープンドメイン質問応答(QA)など、多くのダウンストリームタスクにとって重要な要素である。
本稿では、エンティティ/イベントリンクモデルとクエリ分解モデルを用いて、クエリの異なる情報単位により正確にフォーカスする情報検索パイプラインを提案する。
より解釈可能で信頼性が高いが,提案したパイプラインは,5つのIRおよびQAベンチマークにおける通過カバレッジと記述精度を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-08-09T07:47:17Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z) - Exposing Query Identification for Search Transparency [69.06545074617685]
本稿では,検索システムの2つのクラスにおいて,クエリとドキュメントの役割を逆転させることにより,検索タスクとしてのEQIの実現可能性について検討する。
本研究では,クエリのランク付けの質を評価するための評価基準を導出するとともに,近似EQIの様々な実践的側面に着目した経験的分析を行う。
論文 参考訳(メタデータ) (2021-10-14T20:19:27Z) - Keyword Extraction for Improved Document Retrieval in Conversational
Search [10.798537120200006]
混合開始型会話検索は大きな利点をもたらす。
会話からユーザーが提供する追加情報を取り入れることには、いくつかの課題がある。
我々は2つの対話型キーワード抽出データセットを収集し、それらを組み込んだエンドツーエンドの文書検索パイプラインを提案する。
論文 参考訳(メタデータ) (2021-09-13T13:55:37Z) - Multi-Perspective Semantic Information Retrieval [22.74453301532817]
本研究は,複数の深層学習モデルと従来のIRモデルを組み合わせたマルチパースペクティブIRシステムの概念を導入し,クエリ・セマンス・ペアの関連性をより正確に予測する。
この研究はBioASQ Biomedical IR + QA Challengeで評価されている。
論文 参考訳(メタデータ) (2020-09-03T21:56:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。